Learning Goal (This unit we will......)

\square Solve problems involving the measurements of two-dimensional shapes
\square Determine through investigation the optimal value of various measurements.

Success Criteria (I can......)

solve problems involving the areas and perimeters of composite two-dimensional shapes determine maximum area of a rectangle given fixed perimeter (for a 3- and 4-sided rectangle). determine minimum perimeter of a rectangle given fixed area (for a 3-and 4-sided rectangle).

Day	Topic		Practice Questions	Done \checkmark
1	Pythagorean Theorem		Pg. 423 \# 1ac, 2ac, 3, 4ac, 5-8	
2	Perimeter and area of Composite Figures	8.2	Pgs. 432-435 \#1abc,2cdef,3,10,12,14,15,17, 18 Extra Practice: worksheet	
3	Perimeter and Area Relationships of Rectangles (4-sided)	9.2	$\operatorname{Pg} 487 \# 1-3,5$ $\operatorname{Pg} 470 \# 1,2,3,4$ $\operatorname{Pg} 472 ~ \# 2,5$	
4	Perimeter and Area Relationships of Rectangles (3-sided)	9.2	$\operatorname{Pg} 487 \# 6-8,11,12$ $\operatorname{Pg} 516 ~ \# 3, ~ 4,5$ $\operatorname{Pg.~518~\# 1,5~}$	
5	Review QUEST			

