Unit 7-Geometric Relations: Definitions / Terminology

Classify triangles using side lengths - scalene, isosceles, equilateral Classify triangles using angle measures - acute, obtuse, right
Ray: \longrightarrow
Line:
Line Segment:
Polygon: A closed figure made up of line segments.
Regular Polygon: A polygon where all the sides and angles are equal.

Similar: Same shape but not necessarily the same size
Congruent: Exactly the same in all respects - same shape, same size
Concave Polygon: A polygon with at least one angle greater than 180°

Convex Polygon: A polygon with all angles less then 180°
Kite: Quadrilateral with two pairs of adjacent sides equal
Rhombus: A parallelogram with all sides equal length
Vertex: The point where two or more sides meet.
Adjacent: Adjoining or next to
Obtuse Angle: An angle between 90° and 180°
Acute Angle: An angle less than 90°
Supplementary: Two angles adding to 180°-- forming a Straight Line or Straight Angle (S.A.)

Complementary: Two angles adding to 90°

Opposite Angle Theorem (OAT): If two lines intersect, the angles opposite each other are equal.

Isosceles Triangle Theorem (ITT): If two sides of a triangle are congruent, then the angles opposite those sides are congruent.
Interior Angle: Angle formed on the inside of a polygon by two sides meeting at a vertex.

Exterior Angle: Angle formed on the outside of a geometric shape by extending one of the sides past a vertex (the interior angle and exterior angle at any vertex are supplementary)
Exterior Angle Theorem: The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices. (EAT)

Polygon Exterior Angle Theorem (PEAST): Exterior angles of any polygon add to 360°.
Angle Sum Triangle Theorem (ASTT): Sum of Interior angles of a triangle add to 180°.

Angle Sum Quadrilateral Theorem (ASQT): Sum of interior angles of a quadrilateral add to 360°.

Angle Sum Polygon Theorem (ASPT): Sum of interior angles of a polygon add to 180(n-2) degrees.

Transversal: A line intersecting two parallel lines
Transversal Parallel Line Theorem (TPT)

- Alternate angles are equal (Z pattern) (AA)
- Corresponding angles are equal (F pattern) (CA)
- Co - Interior angles add to 180 degrees (C Pattern) (CIA)

Midpoint: A point that divides a line segment into two equal parts Right Bisector: A line perpendicular to a line segment passing through its midpoint

Median: The line segment joining the vertex of a triangle to the midpoint of the opposite side.
$>$ A median of a triangle bisects its area.
$>$ A line segment joining the midpoints of two sides of a triangle is called a mid-segment
$>$ A mid-segment of a triangle is parallel to the third side and half as long.
$>$ The height of a triangle with a mid-segment as its base is half the height of the original triangle.
$>$ Joining the midpoints of the sides of any quadrilateral produces a parallelogram
> The diagonals of a parallelogram bisect each other.
$>$ The diagonals of a square are equal length and they bisect each other at right angles.
$>$ The diagonals of a rectangle bisect each other.
$>$ The diagonals of a kite meet at right angles.
$>$ The diagonals of a rhombus bisect each other at right angles.

A centroid of a triangle is the point where the three medians of the triangle meet. The centroid is also called the center of gravity of the triangle.

The circumcenter is the center of a triangle's circumcircle. It can be found as the intersection of the perpendicular bisectors.

The Incenter of a triangle is the point where all three angle bisectors always intersect.

The orthocenter is the point where all three altitudes of the triangle intersect. An altitude is a line which passes through a vertex of the triangle and is perpendicular to the opposite side. There are therefore three altitudes in a triangle.

