Unit 7 - Geometric Relations: Definitions / Terminology

Classify triangles using side lengths - \qquad
\qquad ,

Classify triangles using angle measures - \qquad
\qquad
\qquad
Ray:
Line:

Line Segment:
Polygon: A closed figure made up of line segments.
Regular Polygon: A polygon where all the sides and angles are \qquad .

Similar: Same shape but not necessarily the same size
Congruent: Exactly the same in all respects - same \qquad same \qquad
Concave Polygon: A polygon with at least one angle \qquad than 180°

Convex Polygon: A polygon with all angles less than \qquad
Kite: Quadrilateral with two pairs of adjacent sides equal
Rhombus: A parallelogram with all sides \qquad .

Vertex: The \qquad where two or more sides meet.

Adjacent: Adjoining or next to
Obtuse Angle: An angle between \qquad ${ }^{\circ}$ and \qquad \circ

Acute Angle: An angle less than \qquad ${ }^{\circ}$

Supplementary: Two angles adding to \qquad ${ }^{\circ}$-- forming a Straight Line or Straight Angle (S.A.)

Complementary: Two angles adding to \qquad $-$

Opposite Angle Theorem (OAT): If two lines intersect, the angles opposite each other are \qquad .

Isosceles Triangle Theorem (ITT): If two sides of a triangle are congruent, then the angles opposite those sides are \qquad _.

Interior Angle: Angle formed on the \qquad of a polygon by two sides meeting at a vertex.

Exterior Angle: Angle formed on the outside of a geometric shape by extending one of the sides past a vertex (the interior angle and exterior angle at any vertex are \qquad
Exterior Angle Theorem: The \qquad angle at each vertex of a triangle is \qquad to the sum of the interior angles at the other two vertices. (EAT)

Polygon Exterior Angle Theorem (PEAST): Exterior angles of any polygon add to \qquad $\stackrel{\circ}{\circ}$

Angle Sum Triangle Theorem (ASTT): Sum of Interior angles of a triangle add to \qquad ${ }^{\circ}$.

Angle Sum Quadrilateral Theorem (ASQT): Sum of interior angles of a quadrilateral add to \qquad ${ }^{\circ}$.
\qquad angles of a polygon add to $180(\mathrm{n}-2)$ degrees.

Transversal: A line intersecting or crossing two \qquad lines.

Transversal Parallel Line Theorem (TPT)

- Alternate angles are \qquad (Z pattern) (AA)
- Corresponding angles are \qquad (F pattern) (CA)
- Co - Interior angles add to \qquad ${ }^{\circ}$ (C Pattern) (CIA)

Midpoint: A point that divides a line segment into two \qquad parts Right Bisector: A line \qquad to a line segment passing through its \qquad .

Median: The line segment joining the vertex of a triangle to the \qquad of the opposite side.
> A median of a triangle bisects its \qquad .
$>$ A line segment joining the midpoints of two sides of a triangle is called a \qquad - \qquad .
> A mid-segment of a triangle is \qquad to the third side and \qquad as long.
> The height of a triangle with a mid-segment as its base is \qquad the height of the original triangle.
$>$ Joining the midpoints of the sides of any quadrilateral produces a \qquad .
> The diagonals of a parallelogram \qquad each other.

The diagonals of a square are equal length and they \qquad each other at \qquad angles.
> The diagonals of a rectangle \qquad each other.
> The diagonals of a kite meet at \qquad angles.

The diagonals of a rhombus \qquad each other at \qquad angles.

Definitions not on test:

A centroid of a triangle is the point where the three medians of the triangle meet. The centroid is also called the center of gravity of the triangle.

The circumcenter is the center of a triangle's circumcircle. It can be found as the intersection of the perpendicular bisectors.

The Incenter of a triangle is the point where all three angle bisectors always intersect.
The orthocenter is the point where all three altitudes of the triangle intersect. An altitude is a line which passes through a vertex of the triangle and is perpendicular to the opposite side. There are therefore three altitudes in a triangle.

