

Name the quadrilaterals above.
Using the diagrams (and geogebra if needed) explore the answers to the following questions:

- Which of the quadrilaterals above would have diagonals that bisect each other?
- Which of the quadrilaterals above would have diagonals that are perpendicular?
- Therefore, which quadrilaterals would have diagonals that are considered perpendicular bisectors (both bisect each other and intersect at 90° angles)?

SUMMARY:

1. Joining the midpoints of the sides of any quadrilateral produces a \qquad .

2. The diagonals of a parallelogram \qquad each other.

Examples:

1. a.) Investigate whether the lines that bisect the angles of a triangle always intersect at a single point. Describe your findings.
b.) Draw a triangle in which the angle bisectors intersect at a single point. Can you draw a circle that has this point as its centre and intersects the triangle at exactly three points? If so, describe the properties of the circle.
2. a) Draw a quadrilateral STUV with $S T=S V$ and UT $=U V$. (A Kite)
b.) At what angle do the diagonals of the quadrilateral intersect?
c.) Join the midpoints of the sides of the quadrilateral to form a smaller quadrilateral WXYZ. What type of quadrilateral is WXYZ?
d.) Make a conjecture about how the area of WXYZ is related to the area of STUV.
