SET UP

Go to Geogebra.org
Select Geogebra Geometry

GeoGebra Geometry
Change the setting so that values are rounded to 4 decimal places. From the right hand side click on the settings tool

TASK 3

Use the \triangle to construct quadrilateral ABCD .
Remember to click somewhere for A , then B, C and D , then click A again to complete the quadrilateral.

Recall you can remove or change labels by using the label tool under the Edit menu.

Then use the - icon and select "midpoint or center" to construct the midpoint of each side of the quadrilateral. Then using the polygon tool, construct a quadrilateral that joins the four midpoints EFGH.

Click and drag each of the four side lengths of the new quadrilateral from the steps menu E on the left onto the screen so you can see them better.
e: Segment (E, F, q2)
$\rightarrow 3.7$
f: Segment (F, G, q2)
$\rightarrow 4.1$
g : Segment (G, H, q2)
$\rightarrow 3.7$
h : Segment (H, E, q2)
$\rightarrow 4.1$

Use the measure tool to measure the interior angles of EFGH

Conclusion 3

Complete the conclusion on the handout

Keep your drawing from Task 3 to complete Task 4.
You may delete the angle measures.

TASK 4

Under the Basic tools select
icon on the toolbar. Construct the diagonals of EFGH, by selecting point E and G , then connecting point F and H with another line segment.

Use the intersection (at the bottom of the tools menu click on MORE, then go to the points menu) tool
 to construct a point at the intersection of the two diagonals

Use the "Distance or Length" option
 to measure the distance from each of E,F,G, and H to the point in the middle (I). (i.e. length of EI, FI, GI and HI).

Conclusion 4
Complete the conclusions on your handout

TASK 5 - On handout

Name the quadrilaterals above.
Using the diagrams (and geogebra if needed) explore the answers to the following questions:

- Which of the quadrilaterals above would have diagonals that bisect each other?
- Which of the quadrilaterals above would have diagonals that are perpendicular?
- Therefore, which quadrilaterals would have diagonals that are considered perpendicular bisectors (both bisect each other and intersect at 90° angles)?

SUMMARY:

1. Joining the midpoints of the sides of any quadrilateral produces a
\qquad .

2. The diagonals of a parallelogram \qquad each other.
