U7D2_T Angle relationships in Quadrilaterals

Angle reba...

$$
\begin{aligned}
& \text { U7D2 MPM1DI } \\
& \text { Warm Up: } \\
& \text { Determine the value of } x \text { and } y \text {. } \\
& \begin{array}{l}
3 x=180^{\circ} \quad \text { (ASTT, equilateral } \Delta \text {) } \\
x=60^{\circ}
\end{array} \\
& \begin{array}{l}
3 y=360^{\circ} \quad \text { (PEAST, equilateral } \Delta \text {) } \\
y=120^{\circ} \quad \text { (OR } \quad y=180^{\circ}-60^{\circ} \text { (SA) } \\
\text { SOLUTION: } \\
\begin{array}{l}
x=120^{\circ} \\
x=60^{\circ}
\end{array} \\
\begin{array}{l}
3 y=360^{\circ} \\
y=120^{\circ}
\end{array}
\end{array} \text { (PEASTT, equilateral triangle) }
\end{aligned}
$$

7.2 Angle Relationships in Quadrilaterals

Common Terms:

Adjacent: adjoining or next to or beside

Suppicmicitiary. ivvo angics irmai sumitio 土ơ
Transversal: A line that cuts through or intersects with two parallel lines
Obtuse Angle: an angle dretrecueen 90° and 180°
Acute Angle: an angle less than 90°
T.P.T. - C.A. - Transversal Parallel Line Theorem-

Corresponding Angles are equal
(F-pattern) e.g., A = D (TPT-CA)
T.P.T. - A.A. - Transversal Parallel Line Theorem Alternate Angles are equal
(Z-Pattern) e.g., $D=$ (TPT - AA)
T.P.T. - C.I.A. - Transversal Parallel Line Theorem - CoInterior Angles are supplementary
(C)Pattern) e.g., $E+F=180^{\circ}$

Note: Arrows on lines indicate lines are parallel... if there are no arrows, you may not assume lines are parallel.
O.A.T. - Opposite Angle Theorem
e.g., $G=H \quad$ (OAT)

From last day:

S.A. - Straight Angle or Supplementary Angles
e.g., $Y+A=180^{\circ}$
E.A.T. - Exterior Angle Theorem
e.g., $\quad Y+Z=X$
P.E.A.S.T - Polygon Exterior Angle Sum Theorem
e.g., $A+B+X=360^{\circ}$

U7D2 MPM1DI
QUADRILATERAL: A polygon with 4 sides.
Summary:

1. The sum of the interior angles of a quadrilateral is 360 degrees. A.S.Q.T. - Angle Sum Quadrilateral Theorem

$$
\text { E.g., } A+B+C+D=360^{\circ}
$$

2. The sum of the exterior angles of a quadrilateral is 360 degrees.
\qquad
P.E.A.S.T - Polygon Exterior Angle Sum Theorem
d * You can verify those theorems using a diagram and a protractor (or geogebra)

them
using are pes and
algebchniguech

2 triangles inside quadrilateral q both with a total of 180°..
sum of angles inside quadrilateral is 360°

$$
a+e=180^{\circ} \quad \int e+f+g+h=3
$$

$$
\begin{aligned}
& a+e=180 \\
& b+f=180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& e+f+g+t=360^{\circ} \\
& a+b+c+d+360^{\circ}=720^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& b+f=180^{\circ} \\
& c+g=180^{\circ}
\end{aligned}
$$

$$
d=h=180^{\circ}
$$

So, $\begin{aligned} a+b+c+d+e+f+g+h & \left.=4 \times 180^{\circ}\right) \\ & =720^{\circ}\end{aligned}$

1. Find each of the unknown angles:

$$
\begin{aligned}
& a=60^{\circ}(S A) \\
& c=360^{\circ}-\left(60^{\circ}+108^{\circ}+75^{\circ}\right) \\
& c=117^{\circ}(A S Q T) \\
& d=180^{\circ}-75^{\circ}(S A) \\
& d=105^{\circ} \\
& b=180^{\circ}-117^{\circ}(\angle A) \quad b-12^{\circ}
\end{aligned}
$$

*no lines have 120° arrows so $\frac{120^{\circ}}{}$ cannot use

$$
e=180^{\circ}-108^{\circ}(s A)
$$

$b=180^{\circ}-117^{\circ}(S A) b=63^{\circ} \rightarrow$ OR you can use PEAST 2. Find the measure of each unknown angle:

Steps:

1. Calculate y :

$$
\begin{gathered}
y+2 y-30=180 \quad \text { (S.A.) } \\
3 y-30=180 \\
3 y=210 \\
y=70^{\circ}
\end{gathered}
$$

2. Calculate interior angles:
angle 1: $70^{\circ}+10^{\circ}$

$$
=80^{\circ}
$$

angle 2: $2\left(70^{\circ}\right)-30^{\circ}$

$$
=110^{\circ}
$$

3. Calculate exterior angles:

$$
\begin{aligned}
& d=180^{\circ}-72^{\circ}(S A) \\
& a=180^{\circ}-80^{\circ} \text { (SA) } \\
& d=108^{\circ} \\
& a=100^{\circ} \\
& \left\{\begin{array}{l}
c=360^{\circ}-c 80^{\circ}+ \\
c=360^{\circ}-262^{\circ} \\
c=98^{\circ}
\end{array}\right. \\
& \text { (ASsT) } \\
& b=180^{\circ}-98^{\circ}(S A) \\
& b=82^{\circ} \\
& \text { OR }
\end{aligned}
$$

you could use PEAST to solve for b, if you prefer to.

