U7D2 <u>Financ</u>	ial Appli	<u>Definitions</u> Principal (P):			
1.	Budgeting				
2.	Simple Interest Interest Rate (r):				
3.					
	0	Future Value	Time (t):		
	0	Present Value	<u>inne (t).</u>		
4.	4. Annuities				
	0	Future Value	Amount (A):		
	0	Present Value	<u>Amount (A).</u>		
	O Applications				
		 Mortgages 	Interest (I):		
		Vehicle Purchases			

/a or per annum:

Example

John borrows \$1000 from his parents and they charge him 6%/a simple interest. How much does he owe after 5 months?

U7D2

More Definitions for Compound Interest

i = interest rate per compounding period

(interest rate ÷ 100 ÷ number of times per year interest is calculated)

n = *number* of *periods*

(number of years x number of times per year interest is calculated)

P = *Principal (Original amount invested or borrowed) This is sometimes referred to as Present Value or PV*

A= Final Amount (includes interest and principal)

Typical Compounding periods

Compounding Period	Number of Times per year interest is compounded	
Annually		
Semi-annually		
Quarterly		
Bi-monthly		
Monthly		
Bi-weekly		
Weekly		
Daily		

Example 1: If the interest rate is 12%/a compounded monthly for 2 years, how many compounding periods are there and what is the interest rate per period.

Examples

1. Find the future amount of an investment of \$2200 for 5 years at 3.4% per annum compounded monthly. i = n = A = A = A

 $A = P(1+i)^n$

U7D2

2. Rich wants to have \$25 000 in 5 years for a down payment on a house. How much should he invest today at 6.25% per annum,

compounded quarterly?

i = *n* = *A* = *P* = ?

 $P = A(1+i)^{-n}$ Notice the negative exponent

Therefore, he should invest \$ today.

Try these yourself!

Ex. 1. Joe has some money to invest. He buys a 2 year term investment that pays simple interest at 3.35%/a. Calculate the interest earned on a \$50 000 investment.

Ex. 2. Mary invested \$1200 for 2 years in a mutual fund that paid 3.6% interest per year with interest compounded annually.

a) Determine the final amount of Mary's investment.

b) Calculate the total interest that Mary earned on her investment.

Ex. 3. Mark borrows \$3000 at an interest rate of 4.75% per annum compounded monthly. How much will he owe in 5 years?

Ex. 4. Diana invests\$10 000 in a GIC with an interest rate of 3.4%/a compounded semi-annually. If she is in grade 9 today how much will she have when she graduates ? (Note: she only has 3 ½ years to gain interest)