U7D1_T Angle relationships in Triangles

\&

U7D1_T
Angle rela..

U7D1 MPM 1DI Geometric Relationships

7.1 Angle Relationships in Triangles

Polygon: A closed 2-dimentional figure made up of line segments.

Vertex: The point where two or more sides meet.
Interior Angle: An angle formed on the inside of a polygon by two sides meeting at a vertex.

Exterior angle: An angle formed on the outside of a geometric shape by extending one of the sides past a vertex. (The exterior angle and the interior angle together form a straight angle i.e., they are "supplementary")

Supplementary Angles: TWO angles that sum to 180° are supplementary (abbreviated: SA or supp)

Complementary Angles: TWO angles that sum to 90° are complementary (CA or comp)

Constructing a Triangle (google geogebra ... choose www.geogebra.org/apps/ then choose geometry

Exterior Angle Relationships:

1. Polygon Exterior Angle Sum Theorem (PEAST)

The sum of the exterior angles in a triangle is 360°.
$D+E+F=360^{\circ}$

2. Exterior Angle Theorem (EAT)

The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices.

$$
\begin{aligned}
\text { NOTE: } A+B+C=180^{\circ} \text { (ASTT) } \\
A+D=180^{\circ} \quad \text { (SA) }
\end{aligned}
$$

$$
A+B+C=A+D
$$

2 Subtract A

$E=A+C$
$F=A+B$

Subtract A

Interior Angle Relationships:

Angle Sum Triangle Theorem (ASTT)

The sum of the interior angles of a triangle is 180°.
$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$

Examples:

1. Find the measure of the unknown angle:
a)

$$
\begin{aligned}
& x=84^{\circ}+50^{\circ}(E A T) \\
& x=134^{\circ}
\end{aligned}
$$

b) Isosceles Triangle Theorem (ITT)

c)

$$
\begin{aligned}
\text { Angle } A & =180^{\circ}-90^{\circ}-48^{\circ} & \text { Angle } B & =180^{\circ}-95^{\circ}-42^{\circ}(S A) \\
& =42^{\circ} \quad \text { (ASTT) } & & =43^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Angle } C & =95^{\circ}-48^{\circ}(E A T) \quad \text { Angle } D=90^{\circ}(S A) \\
& =47^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& ®_{C}^{\circ}=180^{\circ}-43^{\circ}-90^{\circ} \text { (ASTT) } \\
& c=47^{\circ}
\end{aligned}
$$

