MAP4CI - Algebraic Models Review

A. Simplifying and Evaluating Exponents

1. Simplify, with no negative exponents:
a. $\left(m^{5}\right)\left(m^{2}\right)$
b. $t^{4} \div t$
c. $\left(x^{5}\right)^{3}$
d. $\left(\frac{x}{y}\right)^{-3}$
e. $-(-x)^{0}$
f. m^{-2}
2. Evaluate the following when $\mathrm{c}=5$ and $\mathrm{d}=-3$.
a. $c^{2} d^{3}$
b. $\frac{c^{2} d^{3}}{c^{4} d}$
c. $\frac{4 c^{1 / 2} d}{c^{3 / 2}}$
d. $c^{-1} d^{2} \times c^{3} \div c^{2}$
3. Evaluate, round to nearest $1000^{\text {th }}$ if necessary.
a. $27^{\frac{2}{3}}$
b. $\left(\frac{36}{121}\right)^{\frac{3}{2}}$
c. $2.1^{-1.6}$
4a. Write in radical form:
i. $a^{\frac{1}{3}}$
ii. $a^{\frac{2}{3}}$
iii. $a^{-\frac{1}{5}}$
4 b. Write in exponential form: i. \sqrt{x}
ii. $\sqrt[3]{x^{2}}$
iii. $\frac{1}{\sqrt[4]{a}}$
4. The formula $B=0.4089 M^{\frac{3}{4}}$ gives the bird inhalation rate, B (cubic metres of air per day) for a bird with mass M (kilograms).
a. rewrite the formula using radicals
b. calculate the inhalation rate for a 4.5 kg bald eagle and a 8.0 kg Canada goose.
c. Determine the mass of a bird whose inhalation rate is twice that of a bald eagle.
B. Exponential Equations
5. Solve the following equations algebraically (using common base). Check your answers.
a. $4^{2 x}=4^{6}$
b. $5^{x}=625$
c. $3^{2 x+1}=9$
d. $10^{x+1}=10^{2 x-3}$
e. $4^{3 x-2}=32^{x+1}$
f. $25^{x+1}=125^{x-2}$
6. Determine the value of y to the nearest tenth, using systematic trial.
a. $10^{y}=125$
b. $3^{y}=6$
c. $250(1.03)^{y}=400$
7. In the equation $3^{z+1}=99$ Solve for z by graphing.

Unit 6 Day 7

C. Application Problems (Exponential Models)

9. The amount of medicine A remaining in a body after t hours can be calculated using the formula $A=300(0.8)^{t}$.
a. Calculate the amount of medicine remaining in a body after 3 hours.
b. Determine the time it takes (to the nearest hour) so that there is only 1 mg of medicine remaining in a body.
10. $\$ 1500$ was invested for 2 years in an account that pays interest compounded annually. What was the interest rate if the investment was worth $\$ 1800$ after two years? Use the formula $A=P(1+i)^{n}$.
11. $\$ 25000$ was invested in an account that pays 5.0% interest compounded annually. How many years was the money in the account if the investment was worth $\$ 28500$ at the end of the term? (Hint - use systematic trial or graphing to solve this problem).
12. A ball is dropped and bounces several times, losing some of its rebound height after each bounce. The height reached, h, in metres, after n bounces is given by the equation $h=1.5(0.75)^{n}$.
a) Graph the relation and describe the trend.
b) What is the maximum height after i) the first bounce?
ii) the second bounce?
iii) the third bounce?

Answers:

1.a. m^{7}, b. t^{3}, c. x^{15}, d. $\frac{y^{3}}{x^{3}}$, e. -1 , f. $\frac{1}{m^{2}}$,
2.a. -675 , b. 0.36 , c. -2.4 , d.9,
3.a. 9 , b. $\frac{216}{1331}=0.1623$, c. 0.3051 ,

4a. i. $\sqrt[3]{a}$, ii.. $(\sqrt[3]{a})^{2}$ iii. $\frac{1}{\sqrt[5]{a}}$ 4b. i. $x^{1 / 2}$, ii. $x^{3 / 2}$ iii. $\frac{1}{a^{4}}$
5a. $B=0.4089 \sqrt[4]{M^{3}}$, b. $1.26,1.94$, c. 11.34 kg ,
6a. 3, b. 4, c. 0.5, d. 4, e. 9, f. 8 ,
7a. 2.1, b. 1.6, c. 15.9
8. $z \approx 3.2$,

9a. 153.6, b. 25.56hrs
10. $i \approx 0.095$ or 9.5%,
11. $n \approx 2.7$ years
12. a) The height of successive bounces is decreasing exponentially. (As the number of bounces increases, the height decreases exponentially.)
b) i) 1.125 m
ii) 0.84 m
iii) 0.63 m

Also try,

Pg. 390-391 \# 1ac, 2ac, 3, 4a, 5, 6ab, 7abcd, 8, 9ace, 10, 12, 15, 16, 17

