MAP4CI – Algebraic Models Review

A. Simplifying and Evaluating Exponents

1. Simplify, with no negative exponents:

a.
$$(m^5)(m^2)$$

b.
$$t^4 \div t$$

c.
$$(x^5)^3$$

a.
$$(m^5)(m^2)$$
 b. $t^4 \div t$ c. $(x^5)^3$ d. $\left(\frac{x}{y}\right)^{-3}$ e. $-(-x)^0$ f. m^{-2}

e.
$$-(-x)^0$$

f.
$$m^{-2}$$

2. Evaluate the following when c=5 and d=-3.

a.
$$c^2d^3$$

b.
$$\frac{c^2d^3}{c^4d}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$
 d. $c^{-1}d^2 \times c^3 \div c^2$

3. Evaluate, round to nearest 1000th if necessary.

a.
$$27^{\frac{2}{3}}$$

$$b. \left(\frac{36}{121}\right)^{\frac{3}{2}}$$

i.
$$a^{\frac{1}{3}}$$

ii.
$$a^{\frac{2}{3}}$$

iii.
$$a^{-\frac{1}{5}}$$

4a. Write in radical form: i.
$$a^{\frac{1}{3}}$$
 ii. $a^{\frac{2}{3}}$ iii. $a^{-\frac{1}{5}}$
4b. Write in exponential form: i. \sqrt{x} ii. $\sqrt[3]{x^2}$ iii. $\frac{1}{\sqrt[4]{a}}$

ii.
$$\sqrt[3]{x^2}$$

ii.
$$\frac{1}{\sqrt[4]{a}}$$

- 5. The formula $B = 0.4089 M^{-4}$ gives the bird inhalation rate, B (cubic metres of air per day) for a bird with mass M (kilograms).
- a. rewrite the formula using radicals
- b. calculate the inhalation rate for a 4.5 kg bald eagle and a 8.0 kg Canada goose.
- c. Determine the mass of a bird whose inhalation rate is twice that of a bald eagle.

B. Exponential Equations

6. Solve the following equations algebraically (using common base). Check your answers.

a.
$$4^{2x} = 4^6$$

b.
$$5^x = 625$$

c.
$$3^{2x+1} = 9$$

d.
$$10^{x+1} = 10^{2x-3}$$

e.
$$4^{3x-2} = 32^{x+1}$$

a.
$$4^{2x} = 4^6$$
 b. $5^x = 625$ c. $3^{2x+1} = 9$ d. $10^{x+1} = 10^{2x-3}$ e. $4^{3x-2} = 32^{x+1}$ f. $25^{x+1} = 125^{x-2}$

7. Determine the value of *y* to the nearest tenth, using systematic trial.

a.
$$10^y = 125$$
 b. $3^y = 6$

b.
$$3^y = 6$$

c.
$$250(1.03)^y = 400$$

8. In the equation $3^{z+1} = 99$ Solve for z by graphing.

C. Application Problems (Exponential Models)

- 9. The amount of medicine A remaining in a body after t hours can be calculated using the formula $A = 300(0.8)^t$.
- a. Calculate the amount of medicine remaining in a body after 3 hours.
- b. Determine the time it takes (to the nearest hour) so that there is only 1 mg of medicine remaining in a body.
- 10. \$1500 was invested for 2 years in an account that pays interest compounded annually. What was the interest rate if the investment was worth \$1800 after two years? Use the formula $A = P(1+i)^n$.
- 11. \$25000 was invested in an account that pays 5.0% interest compounded annually. How many years was the money in the account if the investment was worth \$28500 at the end of the term? (Hint use systematic trial or graphing to solve this problem).
- 12. A ball is dropped and bounces several times, losing some of its rebound height after each bounce. The height reached, h, in metres, after n bounces is given by the equation h=1.5(0.75)ⁿ.
 - a) Graph the relation and describe the trend.
 - b) What is the maximum height after i) the first bounce?
 - ii) the second bounce?
 - iii) the third bounce?

Answers:

1.a.
$$m^7$$
, **b.** t^3 , **c.** x^{15} , **d.** $\frac{y^3}{x^3}$, **e.** -1, **f.** $\frac{1}{m^2}$,

2.a. -675, **b**. 0.36, **c**. -2.4, **d**.9,

3.a. 9, **b.**
$$\frac{216}{1331} = 0.1623$$
, **c.** 0.3051,

4a. i.
$$\sqrt[3]{a}$$
, ii.. $(\sqrt[3]{a})^2$ iii. $\frac{1}{\sqrt[5]{a}}$ **4b.** i. $x^{1/2}$, ii. $x^{3/2}$ iii. $\frac{1}{a^4}$

5a. $B = 0.4089\sqrt[4]{M^3}$, **b**. 1.26, 1.94, **c**. 11.34kg,

6a. 3, **b**. 4, **c**. 0.5, **d**. 4, **e**. 9, **f**. 8,

7a. 2.1, **b**. 1.6, **c**. 15.9

8. z≈3.2,

9a. 153.6, b. 25.56hrs

10. $i \approx 0.095$ or 9.5%,

- **11.** n ≈ 2.7 years
- **12. a)** The height of successive bounces is decreasing exponentially. (As the number of bounces increases, the height decreases exponentially.)
- **b)** i) 1.125 m
- ii) 0.84 m
- iii) 0.63 m