MAP 4CI <u>6.5 Construct and Apply Exponential Models</u> **Method – create a table of values, graph and estimate the solution.**

Example 1: Simple and Compound Interest

Jason has \$500 to invest and is considering two investment options.

- Option A: A treasury bond that pays 8% simple interest. The amount, A, after n years is given by the equation A = 500 + 40n
- Option B: A savings account that pays 6.5% per year, compounded annually. The amount, A, after n years is given by the equation $A = 500(1.065)^n$
- a) Graph each relation on the same set of axes. Use #183+ to help you, Describe each relation.

A, is linear Aa is exponential growth.

Example 2: Half-life.

An important property of a radioactive substance is its half-life, the time it takes for a radioactive sample to decay to half its original mass. For example, iodine-131 is a radioactive substance with a half-life of eight days. This material is commonly used for thyroid analysis.

Number a) Complete the table of values for an initial dose of 100 units of iodine-131.

of half intervals	li∳e Time (Days)	Units Remaining in the Bloodstream	First Differences	Second Differences	Percent Differences (Ratios)
0	0	100	-50	25	0,5
1 [8	50	-25	12.5	0.5
a	6	25 <	-12.5	6,25	0.5
3	24	12.5	-6.25	3.125	0.5
4	3 <i>a</i>	6.25	, -3.125 '	nn	0.5
5	40	3.125	mm	nn	nnn

Is this relation linear of non-linear? Is this relation exponential? Explain. b) Yes - ratio column is 0.5

Construct a scatter plot of the data. Does the trend confirm your answer to part b? Explain.

Determine an equation for the curve of best fit. $\underline{u} = 100 (0.5)$ d) Determine how long it will take for the initial dose of iodine-131 to decay to one unit. 53 days

> **Practice: Pg. 385–387 # 1 – 4, 7 ✓ Answers Pg. 560 100 x 0.5 ^ (t /8)