Method - create a table of values, graph and estimate the solution.
Example 1: Simple and Compound Interest
Jason has $\$ 500$ to invest and is considering two investment options.

- Option A: A treasury bond that pays 8% simple interest. The amount, A, after n years is given by the equation $A=500+40 n$
- Option B: A savings account that pays 6.5% per year, compounded annually. The amount, A, after n years is given by the equation $A=500(1.065)^{n}$

Desmos if necessary
a) Graph each relation on the same set of axes. Use Til+ to help you, Describe each relation.
A_{1} is linear
A_{2} is exponential growth.
b) Compare the options. Which is the better investment? Why?

If investing more than 7 years,
$500+40 n$ exponential growth gives you

time (years)

Example 2: Half-life.
An important property of a radioactive substance is its half-life, the time it takes for a radioactive sample to decay no ff its original mass. For example, iodine-131 is a radioactive substance with a half-life of eight/days. This material is commonly used for thyroid analysis.

b) Is this relation linear of non-linears Is this relation exponential? Explain. Yes - ratio column is 0.5
c) Construct a scatter plot of the data. Does the trend confirm your answer to part b? Explain.

$$
\begin{aligned}
& \text { c) Constr } \\
& \text { Iodine -131 }
\end{aligned}
$$

d) Determine an equation for the curve of best fit. $y=100(0.5)^{\frac{t}{8}}$
e) Determine how long it will take for the initial dose-f iodine-131 to decay to one unit. 53 days

$$
y=\frac{\text { Practice: Pg. } 385-387 \# 1-4,7 \text { Answers Pg. } 560}{100 \times 0.5 \wedge(t / 8)}
$$

