U6D3- Exponential Equations Part 1

Unit 6
lesson 3-T...

MAP 4CI : Unit 6 Algebraic Models Lesson 3 - Exponential Equations Part 1

Definition of an Exponential Equation: An equation that contains the variable in the exponent:

$$
\text { Example } 2^{x}=32
$$

To solve the equation you must find a value of " x " that makes this equation true

Methods to Solve

1. Common Base: look for a common base on both sides of the equation and solve for the unknown.
2. Systematic Trial: start with an estimate and using an iterative process continue to improve the estimated answer.
3. Graphing: Graph the relationship and estimate the answer from the graph.
4. Logarithms: Use logarithms to determine the exact answer (not covered in this course).

Method \#1 : Common Base

Looking for a common base:
Express each number as a power
a. 8 as a power of 2 .

$$
\begin{aligned}
& 2^{?}=8 \\
& 2^{3}=8
\end{aligned}
$$

c. 81 as a power of 3

$$
\begin{aligned}
& 3^{3}=27 x \\
& 3^{5}=243 x \\
& 81=3^{4}
\end{aligned}
$$

b. 81 as a power of 9

$$
81=9^{2}
$$

d. 0.25 as a power of 2 $\lambda_{\text {fraction }} \lambda^{\text {negative }}$

$$
\Rightarrow \begin{aligned}
& \text { negative } \\
& \text { exponent }
\end{aligned}
$$

trial and error

$$
2^{-2}=0.25
$$

note: 2^{-2}

$$
\begin{aligned}
& =\frac{1}{2^{2}} \\
& =\frac{1}{4} \\
& =0.25
\end{aligned}
$$

Using a common base to solve exponential equations

- Step 1 - find common base on both sides of equation.
- Step 2 - set exponents equal to each other and solve.
Solve the following exponential equations
a. $3^{x}=3^{7}$

$$
x=7
$$

$$
\text { b. } \begin{aligned}
& 2^{x}=32 \quad \begin{array}{l}
\text { write } 32 \\
\text { as oar of } 2 \\
\text { power } \\
\text { note: } 2^{5}=32
\end{array} \\
& 2^{x}=2^{5} \\
& \therefore x=5
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } 7^{3 x-4}=49 \\
& \text { d. } 9^{2 x-1}=27^{3 x} \\
& \text { * cannot write } 27 \text { as } \\
& 7^{3 x-4}=7^{2} \\
& \begin{array}{l}
\text { * cannot write } 27 \\
\text { a power of } 9 \text {. }
\end{array} \\
& \left({ }_{\uparrow}\right)^{2 x-1}=()_{\uparrow}^{3 x} \\
& \begin{aligned}
& 3 x-4=2 \\
& 3 x=6 \quad \text { solve } \\
& \text { for } x
\end{aligned} \\
& \begin{array}{lll}
\\
3 x=6 & \text { solve } & \quad \uparrow \quad \text { for }
\end{array} \quad 9=3^{2} \quad \begin{array}{c}
\uparrow \\
27=3^{3}
\end{array} \\
& x=2 \\
& \left(3^{2}\right)^{2 x-1}=\left(3^{3}\right)^{3 x} \\
& \text { * HW Pages } 365-367 \text { \#1-7. } 10 \text { * } \\
& 4 x-2=9 x \\
& 3^{2(2 x-1)}=3^{3(3 x)} \\
& -2=9 x-4 x \\
& -2=5 x<-\frac{2}{5}=x \\
& 3^{4 x-2} \quad 3^{9 x} \\
& 3^{4 x-2}=3^{9 x}
\end{aligned}
$$

