MAP 4CI Unit 6 – Algebraic Models

Lesson 1: Exponent Laws

1. Multiplication Law: $X^m \times X^n = X^{m+n}$

When multiplying powers with the same base, keep the base the same and add the exponents.

Fx 1.
$$x^3 \times x^2$$

Ex 1.
$$x^3 \times x^2$$
 (Note: $x^3 \times x^2 =$

) Ex. 2
$$2^3 \times 2^4$$

2. Division Law: $X^m \div X^n = X^{m-n}$

When dividing powers with the same base, keep the base the same and subtract the exponents.

Ex. 1
$$x^5 \div x^2$$
 Ex. 2 $2^4 \div 2^3$

Ex. 2
$$2^4 \div 2^3$$

Note:
$$2^{4} \div 2^{3}$$
$$= \frac{2^{4}}{2^{3}}$$
$$= \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2}$$

3. Power of a Power Law: $(x^m)^n = x^{m \times n}$

If a power is raised to an exponent, multiply the exponents.

Ex.
$$(x^3)^2 =$$
 NOTE: $(x^3)^2 =$

4. Power of a Product Law: $(x \cdot y)^m = x^m y^m$

If a Product is raised to an exponent, distribute the exponent to each factor in the base.

NOTE: This rule does NOT apply to the power of a sum or difference!

Ex. 1
$$(x \cdot y)^5 =$$

Ex. 2
$$(3x^5y^3)^2$$

5. Power of a Quotient Law:
$$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$$

If a Quotient is raised to an exponent, distribute the exponent to every factor in the numerator and denominator.

Ex. 1
$$\left(\frac{x}{y}\right)^2 = \left(\frac{x}{y}\right)\left(\frac{x}{y}\right)$$

Ex. 2
$$\left(\frac{2}{3}\right)^2$$

Ex. 3
$$\left(\frac{2x^3}{3y^2}\right)^3$$

6. Zero Exponents: $x^0 =$

Any power with an exponent of zero is equal to one.

Ex. 1
$$(-2)^0 =$$

Ex. 2
$$-2^0 = -(2^0)$$

Ex. 1
$$(-2)^0$$
 = Ex. 2 $-2^0 = -(2^0)$ Ex. 3 $(-237x^3y^7)^0 =$

$$\frac{\text{Proof}}{3^2 \div 3^2}$$

$$3^2 \div 3^2$$

So,
$$3^0 = 1$$

7. Negative Exponents:
$$x^{-m} = \frac{1}{x^m}$$

A negative in the exponent of a power means to 'flip the base' or 'take the reciprocal'. A negative exponent has nothing to do with the sign of the number.

Ex. 1
$$x^{-2}$$
 =

Ex. 2
$$4^{-2}$$
 =

Ex. 1
$$x^{-2} =$$
 Ex. 2 $4^{-2} =$ Ex. 3 $\left(\frac{4}{5}\right)^{-3} =$

Ex. 4
$$\left(\frac{1}{3}\right)^{-2} =$$

Ex. 4 Simplify first, then evaluate using x = 2.

