Thursday, April 26, 2018

U6D7 Warm Up:
Determine the equation of a line passing through ($-2,-3$) and ($-1,1$).

$$
\begin{array}{rlr}
m & =\frac{1-(-3)}{-1-(-2)} \\
& =\frac{1+3}{-1+2} \\
& =4
\end{array} \quad \begin{aligned}
m x+b & =y \\
4(-1)+b & =1 \\
-4+b & =1 \\
b & =5
\end{aligned}
$$

Linear system - The comparison of two or more linear relations.

Point of intersection - The point where two (or more) lines cross (or intersect).
\square

Unit 6 Page 2

Word Problem: Mike wants to join a ski club for the winter. He is considering the Standard Rate ($\$ 50$ per day) and the Frequent Extremist ($\$ 100$ registration plus $\$ 40$ per day).
a. Write an equation that relates the total cost to the number of days for both payment options. Standard $C=50 \mathrm{n}$ where C is the total cost, Freq. Ext. $C=40 n+100$ n is the number of days.
b. Graph both equations on the same graph.

c. When do both options cost Mike the same amount? Both options cost $\$ 500$ on day 10 .
d. Which payment option should Mike choose? If he plans to ski less than 10 days he should pay the standard rate. Otherwise, he should choose the "Frequent Extremist" plan.

Example 1 Graph the following lines and identify the point of intersection. (1) $y=-\frac{3}{2} x+1$ and $x-y=4$
Verify your solution. (1) $b=1$

$$
\begin{gathered}
m=-\frac{3}{2} \text { down } 3 \\
\text { right } 2 \\
\text { of } \frac{3}{-2} \text { up } 3 \\
\text { left } 2
\end{gathered}
$$

$$
\text { (3) } x-y=4
$$

$$
\frac{x-i n t}{x=4} \quad y
$$

$$
y=-4
$$

check
(2) $\angle S$

$x-y$
$x-x S$
$(2)-(-2)$
$=2+2$
$=4$

Example $\mathbf{2}$ How many different solutions are there to a linear system of two equations?

Case \#1 - two parallel lines * same slope * differenty-int.	Case \# 2-two non-parallel lines	Case \#3 - two identical lines * different slopes *same slope
*same y-mercent		

Example 3 How many solutions do the following linear systems have?
a. $y=4 x-3$
b. $y=-5 x+3$
c. $y=x+1$

$$
y=-\frac{1}{2} x+1
$$

* different slopes * same slopes different b's
* one solution * ho solution

$$
\begin{aligned}
& 2 x-2 y+2=0 \\
& >-2 y=-2 x-2 \\
& \frac{-2}{-2}=\frac{-2 x}{-2}-\frac{2}{-2} \\
& y=x+1 \\
& \text { * an infinite } \\
& \text { number of } \\
& \text { Solutions. }
\end{aligned}
$$

Example 4 Find the equation of the line that passes through the point of intersection of $y=x-2$ and $3 x-4 y=12$ and is parallel to $x-4 y+1=0$.

* left as a challenge question

Answer: $y=\frac{1}{4} x-5$

U6D7 HW: page 348-351 \#1, 2, 7, 9, 10, 13, 12 (use graphing software for \#12)

