# U6D5_T Equation Given Slope and a Point 

## \&

U6D5 T Equation ...

Warm Up: Determine the equation of a line that is:
a) parallel to $3 x-8 y-48=0$

b) perpendicular to $3 x-8 y-48=0$

$$
\begin{aligned}
& m_{\perp}=-\frac{8}{3} \\
& \therefore y_{\text {Finding Equation of a Line }}^{y}=\frac{-8}{3} x+7 \text { is } \perp \text {. }
\end{aligned}
$$

(Given the Slope and One Point)
Recall:
Finding the equation of a line from the graph.

$$
\begin{gathered}
b=2 \quad m=-\frac{3}{2} \\
y=m x+b \\
y=-\frac{3}{2} x+2
\end{gathered}
$$


*Notice: the point $(2,-1)$ is on the line.

Example 1: Determine the equation of a line passing through the point $(4,5)$ with a slope of -2 .

$$
\begin{array}{cc}
y=m x+b & \text { sub in } x=4, y=5, m=-2 \\
m x+b=y & \text { solve for } b \\
-2(4)+b=5 & \\
-8+b=5 & \therefore y=-2 x+13 \\
b=5+8 & \\
b=13 &
\end{array}
$$

Example 2:
Determine the equation of a line that has a slope of $\frac{5}{6}$ and passes through the point $(10,-4)$.
m

$$
\begin{aligned}
& m x+b=y \\
&{ }_{3}^{m} \frac{5}{6}\left(\frac{50}{1}\right)+b=-4 \\
& \frac{25}{3}+b=-\frac{4}{1} \times 3 \\
& b=-\frac{12}{3}-\frac{25}{3} \quad \\
& b=-\frac{37}{3} \quad \begin{array}{l}
\text { subtract } \\
\frac{25}{3} \text { from both }
\end{array} \\
&
\end{aligned}
$$

Example 3: Find the equation of a line..
a parallel to $y=-\frac{1}{4} x>/ 6$, passing through $(3,1)$

$$
m=-\frac{1}{4}
$$

$$
m_{/ /}=-\frac{1}{4} \quad(3,1)
$$

$$
m x+b=y
$$


$-\frac{1}{4}\left(\frac{3}{T}\right)+b=1$

$$
y=-\frac{1}{4} x-6
$$

$$
-\frac{3}{4}+b=\frac{1}{1}, \operatorname{LCD4}
$$

$$
b=\frac{4}{4}+\frac{3}{4}=\frac{7}{4} \quad \therefore y=-\frac{1}{4} x+\frac{7}{4}
$$

b) perpendicular to $y=\frac{1}{3} x-20$, and passing through $(3,-7)$.

$$
m^{k}=\frac{1}{3}
$$

$$
\begin{aligned}
m x+b & =y \\
-3(3)+b & =-7 \\
-9+b & =-7 \\
b & =-7+9 \\
b & =2
\end{aligned}
$$


c) parallel to the $y$-axis, passing through $\left(\begin{array}{c}x \\ (-3),-6)\end{array}\right.$ cuts through $x$-axis So, equation of line is $x=a<x$-int.


$$
x=-3
$$



