Slope yin...

U6D1 Analytic Geometry Part 2
Equation of a Line in Slope Y-Intercept Form
Example 1: Determine the slope and y-intercept of each line.
Then determine the equation of each linear relation.

$$
m=\frac{3}{2} \quad b=-4
$$

$$
y=\frac{3}{2} x-4
$$

$L_{2}: m=\frac{-3}{1} \quad b=3$

$$
m=-3
$$

$$
y=-3 x+3
$$

$$
\begin{aligned}
& m=0 \quad b=-2 \\
& y=\frac{0 x-2}{y=-2}
\end{aligned}
$$

$4: m$ is undefined no y-intercept

$$
x=-3
$$

Example 2: Given the slope and y-intercept, write an equation of the linear relation and then graph the line. To graph a line given slope and y-intercept: Step 1: Plot the y-intercept. ($0, b$) Step 2:
Use the slope value to determine the rise and run \qquad from the y-intercept.
a. $m=\frac{2}{5}, b=-5$ rise $\quad y=m x+b$

$$
y=\frac{2}{5} x-5
$$

b. $m=\frac{-2}{1}, b=1$
C. $m=-\frac{1}{3}, b=0$
d. $m=\frac{5}{T}, b=2$
$y=-2 x+1 \quad y=-\frac{1}{3} x$
$y=5 x+2$

Therefore, the equation of a line can be written in slope y intercept form

$$
y=m x+b
$$

where m is the slope and b in the y -intercept.

Special Cases:
A. Horizontal Lines

- The slope of a horizontal line is \qquad zero .
- Putting that slope into the equation $y=m x+b$, we get
$\therefore y=b^{\prime}$ is the equation of a horizontal line.
$*$ cuts through y-axis so
$y=y$-intercept
B. Vertical Lines
- The slope of a vertical line does not exist. We call this undefined.
\therefore We cannot use slope y -intercept form for vertical lines.
- Vertical lines are written in the form of where ' a ' is the x-intercept.

through
the x-axis so

$$
\begin{aligned}
& x=x \text { so intercept } \\
& x=a^{\prime}
\end{aligned}
$$

Example 3 (interpreting graphs): The distance time graph of a person walking in front of a motion sensor is shown below.
a. How far from the sensor did the person start walking?

$$
2 \mathrm{~m}
$$

b. How fast did the person walk?

$$
m=\frac{2}{5} \text { OR } 0.4 \mathrm{~m} / \mathrm{s}
$$

c. Did the person walk away or towards the sensor: away

Time (s)
(distance from sensor is increasing)
d. What is happening after 5 seconds?

The person is stopped.

