Unit 6 - Analytic Geometry Part $2 \quad$ Name:
is unit. NOTE: You will need graph paper and a ruler for this unit.

Day	Lesson		Assigned Work	Done \checkmark
1	The Equation of a Line in Slope and y-Intercept Form	6.1	$\begin{aligned} & \text { page 304-306 } \\ & \# 1,2,3,4,6(\text { ace), } 7 \text { (ab), } 9, \\ & 10,12 \end{aligned}$	
2	The Equation of a Line in Standard Form	6.2	page 312-315 \#1,2,4, 7,8,9(for 7 \& 8 graph using graphing software), 11	
3	Graph a Line Using Intercepts	6.3	$\begin{aligned} & \text { page 319-321 } \\ & \# 1,3 a c d e f, 4 a b c, 5 c d, 6,9,11 \end{aligned}$	
4	*QUIZ* Parallel and Perpendicular Lines	6.4	$\begin{aligned} & \text { page 328-329 \#1(bd),2,3, } \\ & 4 \text { (acef), } 5 \text { (acef), } 6,7,8,10 \end{aligned}$	
5	Find the Equation of a Line Given the Slope and Point	6.5	$\begin{aligned} & \text { page 335-337 } \\ & \# 1 \text { (ace)2ace,3,5,6,8 } \end{aligned}$	
6	Find the Equation of a Line Given Two Points	6.6	page 342-343 \#1ac,2- 4,5abdf, 8	
7	Linear Systems	6.7	page 348-351 \#1, 2, 7, 9, 10, 13, 12(use graphing software for \#12)	
8	Review		page 352 \#1-18 page 354 \#1-13	
9	TEST			

Learning Goals:

- determine the properties of the slope and y-intercept of a linear relation
- solve problems involving linear relations.

Success Criteria:

- Identify the equation of a line in any of the forms $y=m x+b, A x+B y+C=0, x=a, y=b$;
- express the equation of a line in the form $y=m x+b$, given the form $A x+B y+C=0$.
- Identify the geometric significance of m and b in the equation $y=m x+b$
- identify properties of the slopes of lines and line segments
- graph lines by hand, using a variety of techniques (e.g., graph $y=x-4$
using the y-intercept and slope; graph $2 x+3 y=6$ using the x - and y-intercepts)
- determine the equation of a line from information about the line (e.g. slope and a point, two points etc.)
- describe the meaning of the slope and y-intercept for a linear relation arising from a realistic situation
- determine graphically the point of intersection of two linear relations, and interpret the intersection point in the context of an application

