Warm Un: Identify the following as linear or non-linear. Justify your reasoning.

Every time x goes up by 2 ,
y goes down by 3
(Note: when x goes up by 4
y goes down by 6 which is equivalent to going down by
3 for every $2 k$ goes up) \because LINEAR

Unit 5 -Linear Relations I Day 2 - Slope

Today we will:

1. Define slope.
2. Identify different methods to determine slope of a line.

Lines and Slope

The slope of a line is the steepness of the line.
To calculate the slope, we look at the change in distance. both vertically and horizontally, from one point __ to another point on the line.

rise

Note: Instead of writing the word slope all of the time, in math we use a lower case m. This comes from the French word "monter" which means to climb or togo up".

Why is being able to determine the steepness of a line an important skill? *see next page *

- safety when designing a ramp or a road.
" "pitch" of roof in high snowfall areas.
What is the slope of the skateboard ramp above?

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{2}{5}
\end{aligned}
$$

Explain the meaning of the slope in this situation.

There is a vertical rise of 2 feet for a horizontal run of 5 feet.

Why is being able to determine the steepness of a line an important skill?

Skateboard Ramp Plans

What is the slope of the skateboard ramp above?

$$
\begin{aligned}
& \text { slope }=\frac{\text { rise }}{\text { run }} \\
& \text { slope }=
\end{aligned}
$$

Explain the meaning of the slope in this situation.

Example 1: Determine the slope of each line segment given on the graph below.

$$
\begin{aligned}
m_{A B} & =\frac{5}{4} & m_{G H} & =\frac{-9}{3} \\
m_{C D} & =\frac{2}{8} & & =\frac{-3}{1} \\
& =\frac{1}{4} & & =-3 \\
m_{E F} & =\frac{0}{5} & & \\
& =0 & & =\frac{4}{0} \\
& & & \text { (redidefined }
\end{aligned}
$$

Is there a way to calculate the slope if we are not given the graph, but instead just have $A(2,2)$ two points that are on the line?

$$
m=\frac{\text { change in } y \text {-values }}{\text { change in } x \text {-values }}
$$

$m=\frac{\Delta y}{\Delta x}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\begin{aligned} m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{7-2}{6-2}\end{aligned}$
$=\frac{5}{4}$
Example 2: Given that a line has a slope of 4 and goes through the point $B(3,-5)$, find the coordinates of another possible point on the line.

Method 1: Using a graph

Method 2: Using the coordinate $m=\frac{4}{1}$ $\operatorname{run}(x$ direction) is 1 rise (y-direction) is 4 Add these to the x and y values of the given point.
$(3+1,-5+4)$
$=(4,-1)$

Example 3: Determine the slope of the line given by the table of values.

Method 1: Using a graph

Method 2: Using the table

