U3D7_T - Modeling with Formulas

Sunday, March 4, 2018 8:14 PM

\&DDF

U3D7_T -
Modeling ...

$$
\begin{aligned}
& \text { U3D7 Warm Up: QulZ then... } \\
& \text { Solve. } \frac{2}{3}(3 x-1)=\frac{(2-x)}{2}
\end{aligned}
$$

Unit 3 - Equations
Day 7 - Modelling with Formulas
Example 1: A ship disappears over the horizon due to the curvature of the earth. The higher you are above the earth, the farther away the horizon appears. The relationship between how high you are and how far you can see is given by the formula, where h is your height in metres, above the ground and d is the distance in kilometres to the horizon $d=2 \sqrt{3.2 h}$
a) How far can you see from the CN Tower's 360 degree Restaurant (351 m above the

$$
\begin{aligned}
& \text { ground)? } \quad h=351 \\
& d=2 \sqrt{3.2(351)} \\
& d \doteq 67.0 \\
& \begin{array}{l}
\therefore \text { you can see about } \\
67 \mathrm{~km}
\end{array}
\end{aligned}
$$

b) How high would you have to go for the horizon to appear to be 100 km away?

$$
d=100
$$

Method 1: Substitute and then Rearrange

$$
\begin{aligned}
& d=2 \sqrt{3.2 h} \\
& 2 \sqrt{3.2 h}=100 \\
& \frac{2 \sqrt{3.2 h}}{2}=\frac{100}{2} \\
& \sqrt{3.2 h}=50 \\
& (\sqrt{3.2 h})^{2}=(50)^{2} 2
\end{aligned}
$$

* the opposite of r is 'squaring' so

$$
3.2 h=2500
$$

$$
\frac{3.2 h}{3.2}=\frac{2500}{3.2}
$$

$$
h=781.25
$$

\therefore you would need to be 781.25 m

Example 2: Rearrange the following equations for the indicated variable:
a) Given the equation $d=a+b$, express a in terms of b and d

* means isolate ' a ' (get ' a ' by itself).

$$
\begin{aligned}
a+b & =d \\
a+b-b & =d-b \\
a & =d-b
\end{aligned}
$$

b) Rearrange $C=2 \pi r$ to isolate r

$$
\begin{aligned}
\frac{2 \pi r}{2 \pi} & =\frac{C}{2 \pi} \\
r & =\frac{C}{2 \pi}
\end{aligned}
$$

Rearranging an equation with more than one step. Example 3: The equation of a line relates y to x, m, and b. $y=m x+b$. Rearrange this equation to express x in terms of y, m and b .
$m x+b=y$
$m x+b-b=y-b$
$m \underline{x}=y-b$
$\frac{m x}{m}=\frac{y-b}{m}$
$x=\frac{y-b}{m}$
** Note weill talk more about the
significance of m and b in this
equation in a later
chapter!!!
Steps:

1. Isolate the variable term
2. Isolate the variable

Example 4: The kinetic energy of an object depends on its mass and how it is moving and can be modelled by the formula:
$E=\frac{1}{2} m v_{0}^{2}$, where E is the kinetic energy, in joules, m is the mass, in kilograms, and v is the speed, in metres per second. If the mass of an object is (25)kilograms and it has a kinetic energy of 125 joules, what is the object's velocity?

$$
\begin{aligned}
& E=125 \quad m=25 \quad v=\text { ? } \\
& \frac{1}{2} m v^{2}=E \\
& \frac{1}{2}(25) v^{2}=(125) \\
& \frac{2}{25} \times \frac{25}{2} v^{2}=125 \times \frac{2}{25} \div \frac{25}{2} \text { is the same } \\
& v^{2}=\frac{12^{5} 5}{1} \times \frac{2}{25} \\
& v^{2}=10 \\
& V= \pm \sqrt{10} \\
& (-2)^{2}=4 \\
& (2)^{2}=4 \\
& \therefore \text { the velocity is } \sqrt{10} \mathrm{~m} / \mathrm{s} \text { (0) } \\
& -\sqrt{10} \mathrm{~m} / \mathrm{s} \text {. }
\end{aligned}
$$

U3D7 Practice: Pg. 215-219 \#1-3, 6-8, 10-12, 15, 16a
Challenge: Page 219 \#18, 19

