MAP 4CI Trigonometric Ratios for Obtuse Angles
in Standard Position
Unit 2 Day 6

1. The sine of an obtuse angle, θ, in standard
position is

a) Identify the coordinates of a point that lies on the terminal arm of $\angle \theta$.

for obtuse angle use $x=-4$
b) Sketch a diagram of $\angle \theta$.

c) Determine $\cos \theta$ and $\tan \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{x}{r} & \tan \theta & =\frac{y}{x} \\
& =\frac{-4}{5} & & =\frac{3}{-4}
\end{aligned}
$$

$$
O R-0.8
$$

OR - 0.75
d) Determine the measure of $\angle \theta$, using a calculator.

$$
\begin{array}{lll}
\sin ^{-1}(3 \div 5) & \cos ^{-1}(-0.8) & \tan ^{-1}(-0.75) \\
=36.86^{\circ} & =143.13^{\circ} & =-36.86^{\circ} \\
180^{\circ}-36.86^{\circ} & & 180^{\circ}-36.86^{\circ} \\
=143.14^{\circ} & & =143.14^{\circ}
\end{array}
$$

2. The tangent of an obtuse angle, θ, in standard position is -1 . $\frac{1}{-1} \frac{y}{x}$
a) Identify the coordinates of a point that lies on the terminal arm of $\angle \theta$.
for

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& r=\sqrt{1+1} \\
& r=\sqrt{2}
\end{aligned}
$$

b) Sketch a diagram of $\angle \theta$.

c) Determine $\sin \theta$ and $\cos \theta$. Round your answers to three decimal places.

$$
\begin{aligned}
\sin \theta & =\frac{y}{r} & \cos \theta & =\frac{x}{r} \\
& =\frac{1}{\sqrt{2}} & & =\frac{-1}{\sqrt{2}} \\
& =0.707 & & =-0.707
\end{aligned}
$$

d) Determine the measure of $\angle \theta$, using a calculator.

$$
\begin{aligned}
& \cos ^{-1}(-0.707) \\
= & 135^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{-1}(0.707) \\
&=45^{\circ} \\
& \text { so } \theta=180^{\circ}-45^{\circ} \\
&=135^{\circ} \\
& \tan ^{-1}(-1) \\
&=-45^{\circ} \\
& \text { so, } \theta=-45^{\circ}+180^{\circ} \\
& \theta=135^{\circ}
\end{aligned}
$$

U2D6 Practice: page 93 \#10, 11, 12

