U2D4_T Obtuse angles

${ }^{\text {IPDF }}$

U2D4a_T
Obtuse a...

U2D4a: Investigating Obtuse Angles

Introduction to the Activity:
In this activity, you will use your calculator and the following chart to investigate the trigonometric ratios of obtuse angles. Then, you will analyze the results to determine any patterns.

Performing the Activity

1) Refer to the chart that follows. For each of the listed angles, use your calculator to determine the value of each primary trigonometric ratio in the chart.
2) After you have completed the chart, answer the questions that follow.

Round values to 3 decimal places. There will be some rounding error.

Primary Angle, \boldsymbol{B}	$\sin \boldsymbol{B}$	$\cos \boldsymbol{B}$	$\tan \boldsymbol{B}$
5°	$\frac{\text { opp }}{\text { hyp }}{ }^{0.087}$	$\frac{\text { adj }}{\text { hyp }}{ }^{0.996}$	$\frac{\text { opp }}{\text { adj }} 0.087$
10°	0.174	0.985	0.177
25°	0.423	0.906	0.466
30°	0.500	0.866	0.577
89°	1.000	0.017	57.290
91°	1.000	-0.017	-57.290
150°	0.500	-0.866	-0.577
155°	0.423	-0.906	-0.466
170°	0.174	-0.985	-0.177
175°	0.087	-0.996	-0.087

Investigating Obtuse Angles (Continued)

After you have completed the chart, answer the following questions.

1) What do you notice about the signs (positive? negative?) of the values of \sin B ? Be as specific as possible. Why does this happen?
$\sin B$ is always positive (O, H are both positive)
2) What do you notice about the signs (positive? negative?) of the values of cos B ? Be as specific as possible. Why does this happen?
$A>0, H>0 \cos B$ is positive when B is acute ($\left.\begin{array}{l}\text { between } \\ 0^{\circ}, 90^{\circ}\end{array}\right)$ A or $H<0 \cos B$ is negative when B is obtuse $\binom{$ between }{$90^{\circ}, 180^{\circ}}$
3) What do you notice about the signs (positive? negative?) of the values of tan B ? Be as specific as possible. Why does this happen?
$0, A>0 \quad \tan B$ is positive when B is acute. $0 \circ R A<0 \tan B$ is negative when B is obtuse.
4) Write down pairs of $\angle B$ that have approximately the same value for $\sin B$. Verify that the values are actually the same using your calculator. For example, check that $\sin 50$ and $\sin 1750$ give the same value. How are the angles related to each other? $\sin 10^{\circ}=\sin 170^{\circ} \quad \sin 1^{\circ}=\sin 179^{\circ}$ $\sin 25^{\circ}=\sin 155^{\circ}$ The sine of supplementary $\sin 30^{\circ}=\sin 150^{\circ}$ angles are equal

Using the same pairs of angles, what do you notice about the values of $\cos B$? (Verify on your calculator if needed.) Cosine of supplementary angles are opposites.

Using the same pairs of angles, what do you notice about the values of $\tan B$? (Verify on your calculator if needed.) Tangent of supplementary angles are opposites.
5) Use $\sin ^{-1}$ on your calculator to solve for angle B in $\sin B=0.5$. What value does your calculator give? 30°

What other value for B is possible?

$$
180^{\circ}-30^{\circ}=150^{\circ}
$$

How can you quickly determine the value of the second angle?

$$
180^{\circ} \text { - first angle }
$$

Complete the following using a
calculator and what you have learned:
$\sin B \approx 0.7660$
$B \approx 50^{\circ}$ or $B \approx 180^{\circ}-50^{\circ}=130^{\circ}$
$\sin B \approx 0.9205$
$B \approx 67^{\circ}$ or $B \approx 180^{\circ}-67^{\circ}=113^{\circ}$

판

MAP 4CI Trigonometric Ratios with Obtuse

Angles in Standard Position
 U2D4b

OBTUSE ANGLES IN STANDARD POSITION

Angles in standard position:

- You will be given an ordered pair.
- Plot that point on the Cartesian Plane
- Join that point to the origin (this line segment is called the "terminal arm")
- Draw the "initial arm" on the positive x-axis beginning at the origin.
- θ is measured from the initial arm, counterclockwise to the terminal arm. \checkmark
To find the primary trig ratios, drop a vertical line segment from the plotted point to the x-axis.
This will form a right triangle.

1. The terminal arm of an angle, θ, in standard position passes through $A(2,4)$.
a) Sketch a diagram for this angle in standard position.

b) Determine the length of OA

$$
\begin{array}{ll}
\text { (length of hypotenuse) } \\
r^{2}=x^{2}+y^{2} & r=\sqrt{2^{2}+4^{2}} \\
r=\sqrt{x^{2}+y^{2}} & r=\sqrt{4+16} \\
r=\sqrt{20}
\end{array}
$$

c) Determine the primary trigonometric ratios to three decimal places.

$$
\left.\begin{array}{rlrl}
\sin \theta & =\frac{y}{r} & \cos \theta & =\frac{x}{r} \\
& =\frac{4}{\sqrt{20}} & & =\frac{2}{\sqrt{20} \theta}
\end{array}\right)=\frac{y}{x}
$$

2. The terminal arm of an angle, θ, in standard position passes through $B(-5,6)$.
a) Sketch a diagram for this angle in standard position.

b) Determine the length of $O B(r)$

$$
\begin{aligned}
& r=\sqrt{(-5)^{2}+6^{2}} \\
& r=\sqrt{61}
\end{aligned}
$$

c) Determine the primary trigonometric ratios to three decimal places.

$$
\begin{aligned}
\sin \theta & =\frac{y}{r} & \cos \theta & =\frac{x}{r}
\end{aligned} \begin{array}{ll}
\tan \theta & =\frac{y}{x} \\
& =\frac{6}{\sqrt{b 1}}
\end{array}
$$

U2D4 Practice: Page 93 \#3, 6 U2D5 (NEVTCLASS): QUIZ

