UNIT 2 QUIZ DATE: \qquad UNIT 2 TEST DATE NOTE: Notes will NOT be allowed for quiz/test. You will have a copy of the reference sheet attached U2D1 Trigonometry Intro
**Set your calculator to DEGREE mode

1. Pythagorean Theorem. Draw a right triangle. Label the sides a, b and c (c must be the longest side). Side c is called the hypotenuse.
Now draw a square on each side of the triangle. State the relationship between the squares on the sides of the right triangle. the area of the square at the hypotenuse is the same as the sum of the other two areas.

$$
c^{2}=a^{2}+b^{2}
$$

Ex. 1 Determine the length of the indicated side, in this right-angled triangle.

$$
\begin{aligned}
x^{2}+0.5^{2} & =1.3^{2} \\
x^{2} & =1.3^{2}-0.5^{2} \\
x^{2} & =1.69-0.25 \\
x^{2} & =1.44 \\
x & =\sqrt{1.44} \\
x & =1.2 \mathrm{~cm}
\end{aligned}
$$

Ex. 2 Brad walks 1.7 km North and then 1.5
km East along the sides of a park. Dan starts at the same point and takes a shortcut along the diagonal. How much shorter is Dan's walk?

Brad walks

$$
\begin{gathered}
1.7 \mathrm{~km}+1.5 \mathrm{~km} \\
=3.2 \mathrm{~km}
\end{gathered}
$$

Dan walks $d^{2}=1.7^{2}+1.5^{2}$

$$
\begin{aligned}
& d^{2}=2.89+2.25 \\
& d^{2}=8.03 \\
& d \doteq 2.8
\end{aligned}
$$

\therefore Dan's walk is $3.2-2.8=0.4$ Km shorter than Brad's walk
2. Solving Equations.

Ex. 1 Solve for x to the nearest tenth.

$$
\text { a) } \begin{aligned}
\frac{12}{x} & =\frac{20}{3} \\
20 x & =36 \\
\frac{20 x}{20} & =\frac{36}{20} \\
x & =1.8
\end{aligned}
$$

b) $\frac{6.7}{2.8} \neq \frac{x}{4.2}$

$$
\begin{array}{rlrl}
2.8 x & =6.7(4.2) & \frac{x}{4.2} & =\frac{6.7}{2.8} \\
2.8 x & =28.14 & \frac{x}{4.2} \times 4.2 & =\frac{6.7}{2.8} x^{4.2} \\
\frac{2.8 x}{2.8} & =\frac{28.14}{2.8} & x & =10.05 \\
x & =10.05 \doteq 10.1 & x & =10.1
\end{array}
$$

3. Primary Trig Ratios. Given a right triangle with angle θ (theta), label the sides "hypotenuse", side "opposite" to angle θ, and side "adjacent" to angle θ.

To remember the 3 primary trig. ratios of the sides of a right triangle relative to angle θ use
SOHCAHTOA

The 3 primary trig ratios are:

$$
\begin{array}{ll}
\sin \theta=\frac{O p p}{H y p} & \sin \theta=\frac{O}{H} \\
\operatorname{cosine} \theta=\frac{A d j}{H y p} . & \cos \theta=\frac{A}{H} \\
\operatorname{tangent} \theta=\frac{O p p}{A d j} & \tan \theta=\frac{O}{A}
\end{array}
$$

Ex. 1 Write the 3 primary trig ratios relative to θ.

$$
\begin{array}{rlrl}
\sin \theta & =\frac{10}{26} & \cos \theta=\frac{24}{26} \\
\sin \theta & =\frac{5}{13} & \cos \theta & =\frac{12}{13}
\end{array}
$$

Opp

$$
\begin{aligned}
& \tan \theta=\frac{10}{24} \\
& \tan \theta=\frac{5}{12}
\end{aligned}
$$

Ex. 2 Evaluate to four decimal places.
a) $\sin 54 \doteq 0.8090$
b) $\cos 14 \doteq 0.9703$
c) $\tan 61 \doteq 1.8040$

U2D1 Practice: $\operatorname{Pg} 72$ \# 4-7, 9, 10 ab Check Answers: Pg. 540

