U2D3_T Solving for an Unknown Angle lesson

Monday, February 26, 2018

12:04 PM

Determining Measures of Angles in Right Triangles

Trig ratios can also be used to find the measures of angles of a right triangle that are not known.

Examples: For the following triangles, identify the trig ratio to use, write the equation and solve it to one decimal place using the INVERSE TRIG buttons on your calculator.

Have: 0 = 35

Use: tan-1

A = 12

Need: 🗶

 $\tan x = \frac{35}{12}$

x=tan-1 (35:12)

In calculator 35 [] JE [fan']

SOHCAHITOA

Use: COS $\cos \chi = \frac{A}{\Box}$

Have: A = 91 $Cos x = \frac{91}{100}$ H = 100 $X = cos^{-1}(91 \div 100)$

 $\chi = 24.49...$ $\chi \doteq 24.5^{\circ}$

91 = 100 = cos-1 =

Have: 0 = 40H = 50

Use: \sin^{-1} $\chi = 53.13$ $\sin x = 9$ $\chi = 53.1^{\circ}$ $\sin x = 0$

$$\sin x = \frac{40}{50}$$

Need:
$$\chi$$
 $\chi = \sin^{-1}(40 \div 50)$

$$\chi = 53.13$$

To solve means

to determine the values of all missing sides and angles.

Ex. 2 Solve Δ XYZ given that

$$\angle X = 90^{\circ}, x = 8.2 \ cm, z = 6.0 \ cm$$

$$y^{2} = \chi^{2} - z^{2}$$

$$y^{2} = 8.2^{2} - 6^{2}$$

$$y^{2} = 67.24 - 36$$

$$y^{2} = 31.24$$

$$y = \sqrt{31.24}$$

$$y = 5.6 \text{ cm}$$

For
$$\angle Y$$
,
 $z = 6.0 \text{ (Adj)}$
 $x = 8.2 \text{ (Hyp)}$
 $\cos y = \frac{6}{8.2}$
 $y = \cos^{1}(6 \div 8.2)$
 $y = H3^{\circ}$

Ityp. - 5.2

$$SinZ = \frac{6}{8.2}$$

 $Z = sin^{-1}(6:8.2)$
 $Z = 47^{\circ}$

check 90°+43°+47°=180°V

