

U2D3_T
Solving fo..

U2D3

Determining Measures of

Angles in Right Triangles

Trig ratios can also be used to find the measures of angles of a right triangle that are not known.
Examples: For the following triangles, identify the trig ratio to use, write the equation and solve it to one decimal place using the INVERSE TRIG buttons on your calculator.
$\sin ^{1} \mathrm{mac}^{-1}$

Have： $0=35$

$$
A=12
$$

$$
\tan x=\frac{35}{12}
$$

Need：χ

$$
x=\tan ^{-1}(35 \div 12)
$$

Use： $\tan ^{-1}$

$$
x=70.07 \ldots
$$

$$
x \doteq 70.1^{\circ}
$$

In calculator 35 圆12国 姩五 目

$$
\begin{aligned}
& \text { SOHCAHTOA } \\
& \text { Have: } A=91 \\
& H=100 \\
& \text { Need: } \angle \boldsymbol{x} \\
& \cos x=\frac{91}{100} \\
& \text { Use: } \cos ^{-1} \\
& x=\cos ^{-1}(91 \div 100) \\
& \begin{array}{ll}
\cos x=\frac{A}{H} & x=24.49 \ldots \\
& x \doteq 24.5^{\circ}
\end{array} \\
& 91 \div 100 \equiv \cos ^{-1} \equiv
\end{aligned}
$$

SOHCAHTOA

Have: $0=40$

$$
\sin x=\frac{40}{50}
$$

Need: $x \quad x=\sin ^{-1}(40 \div 50)$
Use: $\sin ^{-1}$
$x=53.13$
$\sin x=\frac{0}{H}$

$$
x \doteq 53.1^{\circ}
$$

To solve means
to determine the values of all missing sides and angles.

Ex. 2 Solve $\triangle X Y Z$ given that

For $\angle Y$,

$$
\begin{aligned}
& z=6.0^{\prime} \text { (Adj) } \\
& x=8.2(\mathrm{HyP} .) \\
& \cos y=\frac{6}{8.2} \\
& y=\cos ^{-1}(6 \div 8.2) \\
& y=43^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}=x^{2}-z^{2} \\
& y^{2}=8.2^{2}-6^{2} \\
& y^{2}=67.24-36 \\
& y^{2}=31.24 \\
& y=\sqrt{31.24} \\
& y \doteq 5.6 \mathrm{~cm} \quad \angle z \\
& \quad \begin{array}{l}
\text { opp }=6 \\
\text { typ }=8.2 \\
\sin z=\frac{6}{8.2} \\
z=\sin ^{-1}(6 \div 8.2) \\
z=47^{\circ}
\end{array}
\end{aligned}
$$

check $90^{\circ}+43^{\circ}+47^{\circ}=180^{\circ}$ V

U2D3 Practice: Pg. 80 \# 5, 6, 7, 11, $13 \quad \checkmark$ Answers Pg. 5402.1

