Definitions:

Term: A term has a \qquad (called a numerical coefficient) and may have a (called variable(s)) and possibly \qquad on the variables. The number
and letter(s) are \qquad together.

Examples: x (this term has a coefficient of 1), 17 (this is called a constant term since there is no variable), 0,

Variable(s): The \qquad in a term are called variable(s).
Variable-Part: The \qquad in a term is the variable-part. (Just remove the coefficient from the term to get the variable-part.)
Coefficient: The \qquad in front of the variable-part of a term is the
\qquad
\qquad
\qquad .)
Like Terms: Terms that have exactly the \qquad - \qquad are called like terms. (Same letter(s) with the same exponent(s)).

Examples: $6 x y^{2}, 7 y^{2} x$
($7 y^{2} x=7 x y^{2} \ldots$ we write the letters alphabetically to make it easier to identify like terms... note : $4 x^{2} y$ is not like $6 x y^{2}$.)
Unlike Terms: Terms that are not " \qquad $"$

Examples: $\quad 3 x, 3 x^{2}$
Polynomials: A polynomials is any number of unlike terms \qquad or \qquad together. A single term may also be a polynomial.
SPECIAL POLYNOMIALS: Polynomials are classified according to the number of terms they contain.

Name	Number of Unlike Terms	Example(s)
	One	$2 x+3 x=5 x \quad$ or
	Two	
	Three	

If a polynomial contains \qquad
 \qquad terms, it is just classified as an n-term polynomial. For example, a polynomial with 7 terms is classified as a 7-term polynomial - it does not have a 'special' name.

Degree of a Term: To find the degree of a term, add up all the exponents on all the \qquad in the \qquad .

Term	Sum of Exponents	Degree of Term
$5 x^{2}$		0 is always zero)
4	0 (there are no variables - we only count up exponents on variables)	
2^{2}		
$3 x^{2} y$		1 (The exponent on x is one)
$-4 x^{3} y^{8} z^{2}$	$7 x$	

Degree of a Polynomial: To find the degree of a polynomial, find the degree of each term in the polynomial. The highest of those is the degree of the polynomial.

Polynomial	Degree of the terms	Degree of the Polynomial
$5 x^{2} y$		
$2 x-7 x^{8}$	1,8	
$4 x y-7 x^{3} y^{2}+5 x^{4}-2$		

Example: Complete the following chart.

Term	Coefficient	Variable(s)	Variable-part	Degree
$3 x y$				
$-139 x^{5} y^{2}$				
ab				
-11		----- (there are no variables - this is a "constant" term	$-----($ (there is no variable-part)	
-ab				
$\frac{7 x^{4}}{3}$				

