Polynomials

Definitions:					
<u>Term:</u> A term has a	(called a numerical coefficient) and may have a				
(called variable(s)) and possibly		on the variables. The number			
and letter(s) are	together.				
Examples: x (this term has	a coefficient of 1), 17 (this is ca	alled a constant term since there is no			
variable), 0,					
<i>Variable(s):</i> The	in a term are called variable(s).				
<i>Variable-Part:</i> The	in a term is the variable-part. (Just remove the				
coefficient from the term to get th	e variable-part.)				
<i>Coefficient:</i> The in front of the variable-part of a term is the					
(Short f	or)			
Like Terms: Terms that have exact	ly the	are called like			
terms. (Same letter(s) with the	same exponent(s)).				
7y ² x, Examples: 6xy ²	,				
$(7y^2x = 7xy^2$ we write the	letters alphabetically to make	it easier to identify like terms note :			
$4x^2y$ is not like $6xy^2$.)					
Unlike Terms: Terms that are not "	·".				
Examples: 3x, 3x ²					
Polynomials : A polynomials is any number of unlike terms or					
together. A single term may also b	e a polynomial.				
SPECIAL POLYNOMIALS: Polynom	ials are classified according to t	he number of terms they contain.			
Name	Number of Unlike Terms	Example(s)			
	One	2x+3x=5x or			
	Тwo				
	Three				

 Three

 If a polynomial contains ______

 terms, it is just classified as an n-term polynomial. For example, a polynomial with 7 terms is classified as a 7-term polynomial – it does not have a 'special' name.

Degree of a Term: To find the degree of a term, add up all the exponents on all the ______ in the ______.

Term	Sum of Exponents	Degree of Term
5x ²		
4		0 (the degree of a constant term
		is always zero)
2 ²	0 (there are no variables – we	
	only count up exponents on	
	variables)	
3x ² y		
$-4x^3y^8z^2$		
7x	1 (The exponent on x is one)	

Polynomials

Degree of a Polynomial: To find the degree of a polynomial, find the degree of each term in the polynomial. The highest of those is the degree of the polynomial.

Polynomial	Degree of the terms	Degree of the Polynomial	
5x ² y			
2x-7x ⁸	1, 8		
$4xy-7x^{3}y^{2}+5x^{4}-2$			

Example: Complete the following chart.

Term	Coefficient	Variable(s)	Variable-part	Degree
Зху				
-139x ⁵ y ²				
ab				
-11		(there are no	(there is no	
		variables - this is a	variable-part)	
		"constant" term		
-ab				
$7x^{4}$				
3				