## Definitions:

Term: A term has a number (called a numerical coefficient) and may have a letter(s) (called a variable(s)) and possibly exponents on the variables. The number and letter(s) are multiplied or divided together.

Examples: $x$ (this term has a coefficient of 1 ), 17 (this is called a constant term since there is no variable), $0, \frac{-x}{y}, 3 n, \frac{7}{3} x^{4},-12 x^{2} y^{3} z$
Variable(s): The letter(s) in a term are called variable(s).
Variable-Part: The letter part in a term is the variable-part. (Just remove the coefficient from the term to get the variable-part.)

Coefficient: The number in front of the variable-part of a term is the coefficient. (Short for numerical coefficient.)

Like Terms: Terms that have exactly the same variable-part are called like terms.
(Same letter(s) with the same exponent(s)).
Examples: $\quad 3 x, 4 x \quad 12 x^{2}, 7 x^{2} \quad-15 x^{3} y z, 7 x^{3} y z \quad 6 x y^{2}, 7 y^{2} x$
$\left(7 y^{2} x=7 x y^{2} \ldots\right.$ we write the letters alphabetically to make it easier to identify like terms... note : $4 x^{2} y$ is not like $6 x y^{2}$.)
Unlike Terms: Terms that are not "like".
Examples: $\quad 3 x, 3 x^{2} \quad 7 x^{2} y, 8 x y^{2} \quad 7 x^{2} y, 7 n$

Polynomials: A polynomials is any number of unlike terms added or subtracted together. A single term may also be a polynomial.
SPECIAL POLYNOMIALS: Polynomials are classified according to the number of terms they contain.

| Name | Number of Unlike Terms | Example(s) |
| :--- | :--- | :--- |
| Monomial | One | $4 n^{5}$ or $2 x+3 x=5 x$ |
| Binomial | Two | $3 x^{2}-9 x$ |
| Trinomial | Three | $14 x^{3}+7 x^{2}-x y$ |

If a polynomial contains more than three terms, it is just classified as an n-term polynomial. For example, a polynomial with 7 terms is classified as a 7-term polynomial - it does not have a 'special' name.

Degree of a Term: To find the degree of a term, add up all the exponents on all the variables in the term.

| Term | Sum of Exponents | Degree of Term |
| :--- | :--- | :--- |
| $5 x^{2}$ | 2 | 2 |
| 4 | 0 | 0 (the degree of a constant term <br> is always zero) |
| $2^{2}$ | 0 (there are no variables - we <br> only count up exponents on <br> variables) | 0 |
| $3 x^{2} y$ | $2+1=3$ | 3 |
| $-4 x^{3} y^{8} z^{2}$ | $3+8+2=13$ | 13 |
| $7 x$ | 1 (The exponent on $x$ is one) | 1 |

Degree of a Polynomial: To find the degree of a polynomial, find the degree of each term in the polynomial. The highest of those is the degree of the polynomial.

| Polynomial | Degree of the terms | Degree of the Polynomial |
| :--- | :--- | :--- |
| $5 x^{2} y$ | 3 | 3 |
| $2 x-7 x^{8}$ | 1,8 | 8 |
| $4 x y-7 x^{3} y^{2}+5 x^{4}-2$ | $2,5,4,0$ | 5 |

Example: Complete the following chart.

| Term | Coefficient | Variable(s) | Variable-part | Degree |
| :---: | :---: | :---: | :---: | :---: |
| $3 x y$ | 3 | x,y | $x y$ | 2 |
| $-139 x^{5} y^{2}$ | -139 | x,y | $x^{5} y^{2}$ | 7 |
| ab | 1 | a,b | ab | 2 |
| -11 | -11 | $\qquad$ (there are no variables - this is a "constant" term | ----- (there is no variable-part) | 0 |
| -ab | -1 | a,b | ab | 2 |
| $\frac{7 x^{4}}{3}$ | $\frac{7}{3}$ | $x$ | $x^{4}$ | 4 |

