U2D1_T- Exponent Laws Part I

U2D1 T-
Exponent.

Unit 2: Polynomials (Chapter 3 in Textbook!) Day 1 - Exponent Laws Part I

A: Simplifying Exponential Expressions -

 Product LawComplete the following table:

Product a) $\left(3^{2}\right.$ $24+4=6$	Expanded Form	Single Power
b) $\left(5^{3}\right)\left(5^{4}\right)$	$5 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$	3^{6}
c) $\left(7^{2}\right)\left(7^{4}\right)\left(7^{3}\right)$	$7 \cdot 7 \cdot 7$	5^{7}
d) $\left(x^{3}\right)\left(7^{4}\right)$	$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$	x^{7}
e) $\left(x^{2}\right)\left(x^{7}\right)\left(x^{1}\right)$	$x \cdot x \cdot x$	x^{10}

Por multiplication rule
PRODUCT RULE: When multiplying powers with the same base... $x^{a} \cdot x^{b}=x^{a+b}$
Keep the BASE the SAME and ADD the EXPONENTS

B: Simplifying Exponential Expressions -

Quotient Law

Complete the following table:

QUOTIENT RULE: When dividing powers with the same base . . .

$$
x^{a} \div x^{b}=x^{a-b}
$$

Keep the BASE the SAME and SUBTRACT the EXPONENTS

Examples: Simplify and evaluate the following:

$$
\begin{aligned}
\text { a) } \begin{aligned}
1 & \times 3^{3} \\
= & 3^{1+3} \\
= & 3^{4}
\end{aligned}{ }^{*}=81 \\
* B
\end{aligned}
$$

*ADD exponents
*BASE stays the same
b) $2^{2} \times 2^{2} \times 2$

$$
\begin{aligned}
& =2^{2+2+1} \\
& =2^{5}=32
\end{aligned}
$$

c) $y^{2} y^{3} y$ for (i) $y=2$
(ii) $y=-1$

$$
\begin{aligned}
& =y_{6}^{2+3+1} \\
& =y^{6}
\end{aligned}
$$

(i)
$(2)^{6}$
(ii) $(-1)^{6}$

$$
=64
$$

$$
=1
$$

$$
\begin{aligned}
& \text { d) } 4 x^{3} x^{2} \text { for } x=10 \\
& =4 x^{5} \quad 4(10)^{5} \\
& =4 \times 100000 \\
& =400000
\end{aligned}
$$

e) $3^{5} \div 3^{4}$
*SUBTRACT EXPONENTS
$=3^{5-4}$
*BASE stays the same

$$
=3^{\prime}=3
$$

f) $4^{6} \div 4^{3}$
$=4^{6-3}$
$=4^{3}$

$$
=64
$$

g) $3 x^{5} \div x^{3}$ for $x=4$
$=3 x^{5-3} 3(4)^{2}$

$$
\begin{array}{ll}
=3 x & =3(1) \\
=3 x^{2} & =48
\end{array}
$$

$$
\begin{aligned}
& \text { h) }\left(3 m^{2} n^{2}\right)\left(-m^{2} n^{2}\right) \\
= & (3)(-1) m^{3+4} n^{2+5} \\
= & -3 m^{7} n^{7}
\end{aligned}
$$

*multiply the coefficients
*add the exponents on the m's *add the exponents on the n's

$$
\begin{aligned}
& \text { i) } \frac{-48 a^{3} b^{5}}{-4 a b^{2}} \quad \begin{array}{l}
\text { *divide the coefficients } \\
= \\
=\left(\frac{-48}{-4}\right)\left(\frac{a^{3}}{a}\right)^{*}\left(\frac{b^{5}}{b^{2}}\right)^{* \text { subtract the exponents on the a's }} \text { *subtract the exponents on the b's }
\end{array} \\
& =12 a^{3-1} b^{5-2} n^{7} \\
& =12 a^{2} b^{3} \\
& =\frac{-1 m^{4} n^{5}}{2} \\
& = \\
& =\frac{-\frac{m^{4} n^{5}}{2}}{}
\end{aligned}
$$

Page 126 \#1-4
(\#2 only evaluate b,c,d, \#4 only evaluate b,c,d)
NOTE: $a \frac{2}{5} b^{3}=\frac{2}{5} a b^{3}$

+ "Why are Babies Like Hinges..." see web-page

