Review Cosine Law:

The Cosine Law can be used to solve for an unknown side, if you are given two sides and a contained angle:

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bccos} \mathrm{~A}
$$

It can also be re-arranged to solve for an unknown angle:

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Bearings: Direction can be written in several ways

Direction		bearing		Diagram	
N60 ${ }^{\circ} \mathrm{E}$		060 ${ }^{\circ}$		$\xrightarrow{\uparrow}$	
Diagram	Bearing	Direction	Diagram	Bearing	Direction
			Provide a sketch here.	235°	

1. A harbour master uses radar to monitor two ships. B and C, as they approach the harbour, H . One ship is 5.3 miles from the harbour on a bearing of 032°. The other ship is 7.4 miles away from the harbour on a bearing of 295°. How far apart are the two ships?
2. An aircraft navigator knows that town A is 71 km due north of the airport, town B is 201 km from the airport, and towns A and B are 241 km apart. On what bearing should she plan the course from the airport to town B ?
