U1D4-T Adding and Subtracting Rationals

Adding an...

MPM1DI U1D4
Adding and Subtracting Rational Numbers

From last day's Homework:

$$
\begin{aligned}
& \left(-1 \frac{3}{4}\right) \fallingdotseq\left(-1 \frac{1}{5}\right) \div\left(-\frac{5}{9}\right) \\
= & -\frac{7}{4} \div\left(\frac{-6}{5}\right) \div\left(\frac{-5}{9}\right) \\
= & \frac{-7}{4} \times\left(\frac{-5}{8}\right) \times\left(\frac{-9}{5}\right)^{-3} \\
= & \frac{-21}{8}
\end{aligned}
$$

MPM101 U104
Lowest Common(Denominator
Example 1: Determine the LCD for each of the following:
a) $\frac{1}{3}, \frac{1}{4}<_{<}^{2}$
prime ${ }^{\prime}$ composite
b) $\frac{2}{5}, \frac{3}{8}<4<2 \sum_{2}^{\angle \begin{array}{l}\text { Rime } \\ \text { factors } \\ \text { of } 8\end{array}}$

LCD 12

$$
\operatorname{LCD} 40
$$



$$
\text { LCD } 2 \times 5 \times 2 \times 3
$$

$$
\text { LCD } 28
$$

$$
=60
$$

MPM1DI U1D4
Adding and Subtracting Fractions
** Remember fractions can only be added or subtracted if they have a $\qquad$ Common
DENOMINATOR.
When Adding or Subtracting Fractions:

1. Change Mixed Fractions to Improper Fractions
2. Find the LCD
$\qquad$
3. Get appropriate numerators

For each fraction, to go with the LCD $\begin{gathered}\text { For each rect reaction, } \\ \text { determine what value }\end{gathered}$ the dy denominator is multiplied by toget the LCD, then multiply the old numerator by that value.
4. Add/subtract the numerators Keeping the LCD in the denominator
5. Reduce to lowest terms.
$\qquad$

MPM1DI U1D4
Examples: Evaluate each expression. Write your answer in lowest terms:

$$
\begin{aligned}
& \text { a) } \frac{2}{3}+\frac{1}{4} \\
& =\frac{2 \times 4}{3 \times 4}+\frac{1}{4 \times 3} \\
& =\frac{8+3}{12} \\
& =\frac{11}{12} \\
& \operatorname{LCDI2}\binom{\left(\begin{array}{l}
b \\
2
\end{array} \sum_{2}^{4}\right.}{2} \frac{3}{8}+\frac{3}{4}\left(C_{2}^{2}\right) \operatorname{LCD} 8 \\
& =\frac{3}{8}+\frac{3 \times 2}{4 \times 2} \\
& =\frac{3+6}{8} \\
& =\frac{9}{8} \\
& \text { c) } 2 \frac{1}{7}+1 \frac{1}{2} \\
& =\frac{15}{7}+\frac{3}{2} \text { LCD14 } \\
& =\frac{15 \times 2}{7 \times 2}+\frac{3 \times 7}{2 \times 7} \\
& =\frac{30+21}{14} \\
& =\frac{51}{14} \\
& \begin{array}{l}
\text { d) } \frac{5}{6}-\frac{3}{8}\left(\begin{array}{l}
2 \\
-2 \\
3
\end{array}\right) \\
\text { LCD } 2 \times 3 \times 2 \times 2=24
\end{array} \\
& =\frac{5 \times 4}{6 \times 4}-\frac{3 \times 3}{8 \times 3} \\
& =\frac{20-9}{24} \\
& =\frac{11}{24} \\
& \begin{array}{l}
\text { d) } \frac{5}{6}-\frac{3}{8} 2_{4}^{2}=\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right) \\
\text { LCD } 2 \times 3 \times 2 \times 2=24
\end{array}
\end{aligned}
$$

MPM1DI U1D4

$$
\text { e) } \begin{aligned}
& 3 \frac{2}{5}-1 \frac{3}{4} \\
= & \frac{17}{5}-\frac{7}{4} \\
= & \frac{68-35}{20} \\
= & \frac{33}{20}
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
& \left(1 \frac{1}{4}\right)+\left(-\frac{3}{2}\right)-\left(2 \frac{2}{5}\right) \\
= & \frac{5}{4}-\frac{3}{2}-\frac{12}{5} \quad \text { LCD } 20 \\
= & \frac{5 \times 5-3 \times 10-12 \times 4}{20} \\
= & \frac{25-30-48}{20} \\
= & \frac{-53}{20}
\end{aligned}
$$

MPM1DI U1D4
Don't forget about... BEDMAS

$$
\begin{aligned}
& \text { g) } \begin{array}{l}
\frac{2}{3} \times \frac{5}{4}+\frac{3}{2} \\
=\frac{5}{6}+\frac{3}{2} \\
=\frac{5+3 \times 3}{6} \\
=\frac{5+9}{6}=\frac{14}{6}=\frac{7}{3} \\
\quad \text { h) } \frac{2}{3} \times\left(\frac{5}{4}+\frac{3}{2}\right)^{2} \\
=\frac{2}{3} \times \frac{6+5}{4} \\
=\frac{1}{3} \times \frac{11}{42} \\
=\frac{11}{6}
\end{array} \$=\frac{1}{2}
\end{aligned}
$$

MPM1DI U1D4

$$
\text { i) } \begin{aligned}
& 2-\frac{7}{8} \div \frac{3}{4} \\
= & \frac{2}{1}-\frac{7}{8} \times \frac{4^{\prime}}{3} \\
= & \frac{2}{1}-\frac{7}{6} \\
= & \frac{12-7}{6} \\
= & \frac{5}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { j) } \begin{array}{l}
\frac{3}{7}+\frac{-2}{3} \times \frac{3}{5} \div \frac{4}{5} \\
=\frac{3}{7}-\frac{2}{5} \times \frac{5}{4} \\
=\frac{3}{7}-\frac{1}{2} \\
=\frac{6-7}{14} \\
=\frac{-1}{14}
\end{array} \text { = }
\end{aligned}
$$

