U1D3 Warm Up:
Define perimeter. Distance around the 'outside' of an object Define Area.

The space the two-dimensional surface Perimeter and Area of Composite Figures covers.
Often complex shapes can be divided into simple shapes to calculate perimeter and area.

Example 1. A circular swimming pool is to be bordered by interlocking brick as shown in the diagram.
a) Determine the area to be covered by interlocking brick.

$$
\begin{aligned}
A & =A_{\square}-A_{0} \\
A & =l \omega-\pi r^{2} \\
& =(21.5)(13.8)-\pi(4)^{2} \\
& =246.434 \ldots \\
& \doteq 246.4
\end{aligned}
$$

\therefore the area is $246.4 \mathrm{~m}^{2}$
b) If the bricks are sold by the skid, and each skid has enough bricks to cover $9 \mathrm{~m}^{2}$, how many skids must be purchased?

$$
\begin{aligned}
& 246.4 \div 9 \\
= & 27.37
\end{aligned}
$$

\Rightarrow bump up to 28.
\therefore we would buy 28 skids of bricks.

Example 2. Calculate the area of the shaded region.

$$
\begin{aligned}
A & =A_{0}-A_{\Delta} \\
& =\pi r^{2}-\frac{b h}{2} \\
& =\pi(4)^{2}-\frac{(8)(4)}{2} \\
& =34.265 \ldots \\
& \doteq 34.3 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\frac{\square}{b} \quad A_{\text {parallelogram }}=b h
$$

$$
A=A_{\square}-A_{\Delta}
$$

$$
=b h-\frac{b h}{2}
$$

$$
\begin{array}{r}
160 \\
-8
\end{array}
$$

$$
=19(8)-\frac{8(8)}{2}
$$

$$
=152-32
$$

$$
=120 \mathrm{~mm}^{2}
$$

Example 3. A restaurant is building an outdoor patio in the shape of the diagram below. The patio area will be made of interlocking paving stones with different stones along the border. The paving stones cost $\$ 52.95 / \mathrm{m}^{2}$. The border stones cost $\$ 15.50 / \mathrm{m}$. How much will the materials for the patio cost, including 13% taxes? Allow an additional 10% to account for stones that must be cut for the design.
Step 1: Calculate the unknown outside measurements.

Step 2: Calculate the total perimeter and add an additional 10\%.

$$
\begin{aligned}
P & =3+6+5+6.4+9.4+5 \\
& =34.8 \quad \text { find } \\
\text { Total } & =34.8 \times 1.1 \quad \text { (original } 100 \% \text { plus } 10 \% \text {) } \\
& =38.3 \mathrm{~m} \quad \text {) }
\end{aligned}
$$

Step 3: Identify the simple shapes that make up the area.
Calculate the area of each shape.

$$
\begin{aligned}
A & =A_{1}+A_{2}+A_{3}+A_{4} \\
& =\frac{b h}{2}+l w+\frac{b h}{2}+\frac{\pi r^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Step 4: Calculate the total area and add } 10 \% \text { for waste. } \\
& \begin{aligned}
A & =\frac{3(4)}{2}+6(4)+\frac{(5)(4)}{2}+\frac{\pi(3)^{2}}{2} \\
& =6+24+10+14.13 \ldots \\
& =54.1 \\
\text { Total } & =54.1 \times 110 \% \\
& =54.1 \times 1.1 \quad \therefore \text { area is } 59.5 \mathrm{~m}^{2} \\
& =59.51 \quad \therefore \text { a }
\end{aligned}
\end{aligned}
$$

Step 5: Calculate the total cost before taxes.

$$
\begin{aligned}
& P \times 15.50+A \times 52.95 \\
& \text { Cost }= 38.3 \times 15.50+59.5 \times 52.95 \\
&= 3744.175
\end{aligned}
$$

$$
\text { = } 4744.18
$$

Step 6: Calculate the total cost including taxes.

$$
\begin{aligned}
\text { Total Cost } & =3744.18 \times 1.13 \\
& \doteq 4230.92 \\
\therefore \text { it would cost } & 4230.92
\end{aligned}
$$

Example 4: Calculate the perimeter of the shaded region. Round your answer to one decimal place.

$$
\begin{aligned}
\text { Total Perimeter } & =36.1+6+17.3+6 \\
& =65.4 \mathrm{~m}
\end{aligned}
$$

