U1D2-T Order of Operations

Saturday, January 27, 2018 4

U1D2-T Order of ...

U1D2 Order of Operations

When simplifying expressions, we must always follow the 'Order of Operations'.

Brackets

Exponents

Division in order Multiplication left to right

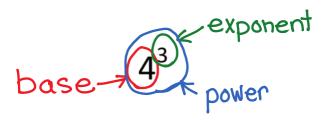
Addition > in order left to right

Is the acronym to help us remember the correct order.

Example 1: Evaluate.

a)
$$(8-3)+(1-6)$$

$$= 5 + (-5)$$


$$= 5 - 5$$

b)
$$-(4-9)-(14-4)$$

$$=-(-5)-10$$

c)
$$(4)(-1) + (7-2)$$

= $(4)(-1) + 5$ \leftarrow
= $-4 + 5$
= $|$

Working with Exponents

Example 2: Evaluate.
a)
$$5^2$$
 b) $(-4)^2$
= 5×5 = $(-4)(-4)$
= 25 = 16

c)
$$-4^{2}$$
 (R) -4^{2} d) $(-2)^{3}$
= -4×4 = $(-2)(-2)(-2)$
= -16 = -8

f)
$$-0.3^3$$
 (Remember: no calculator)
= $-\left(\frac{3}{16}\right)^3$ (Remember: no calculator)
= $-\frac{3 \times 3 \times 3}{10 \times 10 \times 10}$ (Remember: no calculator)
= $-\frac{3 \times 3 \times 3}{10 \times 10 \times 10}$ (Remember: no calculator)
= $-\frac{3 \times 3 \times 3}{10 \times 10 \times 10}$ (Remember: no calculator)

g)
$$\left(-\frac{2}{3}\right)^2$$
 NOTE: $-\frac{2}{3} = \frac{-2}{3} = \frac{2}{-3}$
 $= \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)$ $-\frac{2}{-3} = \frac{2}{3} \neq -\frac{2}{3}$
 $= \frac{2 \times 2}{3 \times 3}$
 $= \frac{4}{9}$

Example 3: Evaluate.

example 3: Evaluate.
a)
$$3(-2+4)^3 - 2(-4+1)$$

 $= 3(2)^3 - 2(-3)$
 $= 3(8) - 2(-3)$
 $= 24 - (-6)$
 $= 24 + 6$
 $= 30$

b)
$$[(-15)-3] \times [(-12)-(-4)]$$

= $(-15-3)(-12+4)$
= $(-18)(-8)$
= 144

c)
$$2 \times 100 \div 10 \times 2$$

= $200 \div 10 \times 2$
= 20×2
= 40

d)
$$\left[\frac{(-6+3)(13-9)}{(-1)(8-10)}\right]^2$$

$$= \left[\frac{(-3)(4)}{(-1)(-2)}\right]^2$$

$$= \left(\frac{-12}{2}\right)^2$$

$$= (-6)^2$$

$$= 36$$

e)
$$\frac{3(9-4)(-2)(10-7)}{-(15-8)}$$

= $\frac{3(5)(-2)(3)}{-(7)}$

= $\frac{5 \times 2 \times 3 \times 3}{7}$

= $\frac{90}{7}$

eveneratives with a positive of the properties of the p