DIVISIBILITY

1.	Which of the following are divisible by 2? Which are divisible by 3? Which are divisible by 6?					
	a) 4216	b) 739	c) 8391	d) 79 284		
2.	Which of the following a) 3488	have 4 as a factor? Whi b) 72916	ch are multiples of 8? c) 1 000 816	d) 116208		
3.	Determine which length a) 105m	ns of wire can be cut into b) 3140m	5m pieces without any c) 17 364m	waste?		
4.	Coach Ing wants to divide the students ever	de 738 students into intra lly?	amural teams with 9 pla	yers each. Can he		
5.	Leap years occur in years divisible by 4 and <i>not divisible by 1000</i> . Which of the following are leap years?					
	a) 1928	b) 1946	c) 2000	d) 2024		
6.	Which of the following a) 429 176	are divisible by 11? b) 70 908 795	c) 25 835 238			
7.	Find all the possible dig a) 2	gits for that would mak b) 3	e 491 divisible by: c) 5	d) 11		
8.	Find all the possible dig a) 5	gits for that would mak b) 4	e 19 0 divisible by: c) 8	d) 9		

9. Determine the smallest natural number that is divisible by *every whole number from 1 to 10*.

FACTORS, DIVISORS, PRIMES, ETC...

1.	Determine whether each number is <i>prime</i> or <i>composite</i> :						
	a) 9	b)	7	c) 23		d) 24	
2.	Write all the	factors of the f	ollowing nun	ibers:			
	a) 32	b)	48	c) 54		d) 90	
3.	Write the following numbers as a product of their prime factors:						
	a) 300	b)	936	c) 2450		d) 7986	
4.	A <i>perfect number</i> is one that is the sum of all its factors <u>except itself</u> . For example, 6 is perfect since 1, 2, 3 and 6 are all its factors and $1+2+3=6$. Find the next two perfect numbers. (<i>Hint</i> : one is less than 30 and the other is between 490 and 500.)						
5.	Write all the	possible whole	number dime	ensions for a rec	tangle having ar	n area of 36m ² .	
6.	Find the GC	F for the follow	ving:				
	a) 28, 49	b) 32, 48	c) 24, 36	d) 18, 24	e) 25, 50	f) 12, 18, 24	
7.	Find the LC I	M for the follow	ving:				
	a) 18, 27	b) 10, 25	c) 16, 24	d) 32, 40	e) 28, 36	f) 24, 36, 12	

- 8. For any two prime numbers greater than 3, the difference of their squares is always a multiple of 24. Show three examples of this.
- **9.** Find:
 - a) the *largest* 2-digit prime number
 - **b**) a 2-digit prime number that remains prime when the numbers are reversed