ERL MAP UNIT 6 Algebraic Models Practice

Friday, January 19, 2018 8:06 A

Chapter 6 : Algebraic Models

A. Simplifying / Evaluating Exponents

1. Simplify (Remember: leave no negative exponents in your answer.)

a.
$$\frac{y^{-1}}{y^{-2}}$$

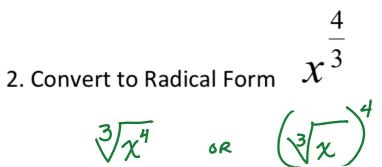
b. $x^{-1}(x^{-3})^{-2}x^{-7}$
 $= y^{-1-(-2)}$
 $= x^{-1}(x^6)x^{-7}$
 $= x^{-1+6-7}$
 $= x^{-2}$
 $= x^{-2}$

$$c. \frac{t}{v} \left(\frac{v}{t}\right)^{-3} v^{4}$$

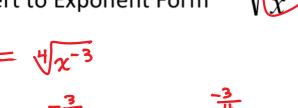
$$= \frac{t}{v} \left(\frac{t}{v}\right)^{3} v^{4}$$

$$= \frac{t}{v} \cdot \frac{t}{v^{3}} \cdot v^{4}$$

$$= \frac{t}{v} \cdot \frac{t}{v^{3}} \cdot v^{4}$$


$$= \frac{t}{v} \cdot \frac{t}{v^{4}} \cdot v^{4}$$

$$= t^{4} \cdot v^{0}$$


$$= t^{4} \cdot v^{0}$$

$$= t^{4} \cdot v^{0}$$

3. Convert to Exponent Form

4. Evaluate

a.
$$16^{\frac{1}{2}}$$

c.
$$(-27)^{\frac{1}{3}}$$

$$= \sqrt[3]{-27}$$

$$_{\text{b.}}\,16^{\frac{1}{4}}$$

$$d. \left(\frac{1}{9}\right)^{\frac{3}{2}}$$

$$=\frac{1}{(\sqrt{9})^3}$$

$$=\frac{1}{3^3}$$

$$=\frac{1}{27}$$

B. Exponential Equations

5. Solve for the unknown. Express with a common base, if possible. Otherwise use systematic trial.

a.
$$4^{x} = 8$$

b. $(81)^{\frac{1}{2}} = (24)^{x+1}$
 $2^{2x} = (2^{3})$
 $3^{\frac{1}{2}} = (3^{5})^{\frac{1}{2}}$
 $3^{\frac{1}{2}} = (3^{\frac{1}{2}})^{\frac{1}{2}}$
 $3^{\frac{1}{2}} = (3^{\frac{1}{2}})^{\frac{1}{2}}$
 $3^{\frac{1}{2}} = (3^{\frac{1}{2}})^{\frac{1}{2}}$

Chapter 6: Algebraic Models - Practice **Problems**

A. Simplifying and Evaluating Exponents

- 1. Simplify, with no negative exponents:
- a. $(m^5)(m^2)$ b. $t^4 \div t$

c.
$$(x^5)^3$$

c.
$$(x^5)^3$$
 d. $(\frac{x}{y})^{-3}$ e. $-(-x)^0$

e.
$$-(-x)^{0}$$

a.
$$c^2d^3$$

b.
$$\frac{c^2d^3}{c^4d}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$
 d. $c^{-1}d^2 \times c^3 \div c^2$

3. Evaluate, round to nearest 1000th if necessary.

a.
$$64^{\frac{2}{3}}$$

$$b. \left(\frac{36}{121}\right)^{\frac{3}{2}}$$

c.
$$2.1^{-1.6}$$

4a. Write in radical form:

i.
$$a^{\frac{1}{3}}$$

ii.
$$a^{\frac{2}{3}}$$

i.
$$a^{\frac{1}{3}}$$
 ii. $a^{\frac{2}{3}}$ iii. $a^{-\frac{1}{5}}$

4b. Write in exponential form:

i.
$$\sqrt{x}$$

ii.
$$\sqrt[3]{x^2}$$

i.
$$\sqrt{x}$$
 ii. $\sqrt[3]{x^2}$ iii. $\frac{1}{\sqrt[4]{a}}$

B. Exponential Equations

5. Solve the following equations algebraically (using common base). Check your answers.

a.
$$4^{2x} = 4^6$$
 b. $5^x = 625$

b.
$$5^x = 625$$

c.
$$3^{2x+1} = 9$$

d.
$$10^{x+1} = 10^{2x-3}$$

e.
$$4^{3x-2} = 32^{x+1}$$
 f. $25^{x+1} = 125^{x-2}$

f.
$$25^{x+1} = 125^{x-2}$$

6. Determine the value of y to the nearest tenth, using systematic trial.

a.
$$10^y = 125$$
 b. $3^y = 6$

b.
$$3^y = 6$$

c.
$$250(1.03)^y = 400$$

C. Application Problems

- 7. The amount of medicine A(mg) remaining in a body after t hours can be calculated using the formula $A = 250(0.75)^t$.
- a. Calculate the amount of medicine in *mg* remaining in a body after 5 hours.

b. How long to the nearest hour will it take until there is 10 mg remaining.

Chapter 6: Algebraic Models - Practice Problems

A. Simplifying and Evaluating Exponents

1. Simplify, with no negative exponents:

a.
$$(m^5)(m^2)$$

b.
$$t^4 \div t$$

c.
$$(x^5)^3$$

d.
$$\left(\frac{x}{v}\right)^{-3}$$

a.
$$(m^5)(m^2)$$
 b. $t^4 \div t$ c. $(x^5)^3$ d. $\left(\frac{x}{v}\right)^{-3}$ e. $-(-x)^0$

2. Evaluate the following when c=5 and d=-3.

a.
$$c^2d^3$$

b.
$$\frac{c^2 d^3}{c^4 d}$$

c.
$$\frac{4c^{1/2}d}{c^{3/2}}$$

$$d. c^{-1}d^2 \times c^3 \div c^2$$

3. Evaluate, round to nearest 1000th if necessary.

a.
$$64^{\frac{2}{3}}$$

b.
$$\left(\frac{36}{121}\right)^{\frac{3}{2}}$$

c.
$$2.1^{-1.6}$$

4a. Write in radical form:

$$a^{\frac{1}{3}}$$

i.
$$a^{\frac{1}{3}}$$
 ii. $a^{\frac{2}{3}}$ iii. $a^{-\frac{1}{5}}$

4b. Write in exponential form: i. \sqrt{x} ii. $\sqrt[3]{x^2}$ iii. $\frac{1}{\sqrt[4]{a}}$

ii.
$$\sqrt[3]{x^2}$$

iii.
$$\frac{1}{\sqrt[4]{a}}$$

<u>B. Exponential Equations</u>5. Solve the following equations algebraically (using common base). Check your answers.

a.
$$4^{2x} = 4^6$$

b.
$$5^x = 625$$

c.
$$3^{2x+1} = 9$$

d.
$$10^{x+1} = 10^{2x-3}$$
 e. $4^{3x-2} = 32^{x+1}$ f. $25^{x+1} = 125^{x-2}$

$$e. 4^{3x-2} = 32^{x+1}$$

f.
$$25^{x+1} = 125^{x-2}$$

6. Determine the value of y to the nearest tenth, using systematic trial.

a.
$$10^y = 125$$

b.
$$3^y = 6$$

c.
$$250(1.03)^y = 400$$

C. Application Problems

- 7. The amount of medicine A(mg) remaining in a body after t hours can be calculated using the formula $A = 250(0.75)^t$.
- a. Calculate the amount of medicine in mg remaining in a body after 5 hours.
- b. How long to the nearest hour will it take until there is 10 mg remaining.

1a.
$$m^7$$
, **b.** t^3 , **c.** x^{15} , **d.** $\frac{y^3}{x^3}$, **e.** -1, **2a.** -675, **b.** 0.36, **c.** -2.4, **d.** 9, **3a.** 16, **b.** $\frac{216}{1331} = 0.1623$, **c.** 0.3051

4a. i.
$$\sqrt[3]{a}$$
, ii.. $(\sqrt[3]{a})^2$ iii. $\frac{1}{\sqrt[5]{a}}$ **4b.** i. $x^{1/2}$, ii. $x^{3/2}$ iii. $\frac{1}{x^{1/4}}$ **5a.** 3, **b.** 4, **c.** 0.5, **d.** 4, **e.** 9, **f.** 8,

6a. 2.1, b. 1.6, c. 15.9 7a. 59.3 b. 11 hours