Exam Review Day 1

Work through these questions at whiteboards

1. Simplify Completely. Be sure to state restrictions on the variable.

$$
\frac{x^{2}-9}{4 x+12}+\frac{8 x^{2}+16 x}{x^{2}-x-6} \div \frac{2 x}{x-3}
$$

2. Determine the production level required for maximum profit. What is the maximum profit? Given: $P(x)=-3 x(x-50)+1000$, where x is the number of items produced and $P(x)$ is the profit in dollars.
3. Given the parent function, $f(x)=\frac{1}{x}$ and the transformation described as $y=-2 f(x+4)-5$ Write the image equation and state the domain and range of both the parent function and the image equation.
4. Simplify, leave no negative exponents.

$$
\left(\sqrt[5]{\frac{-32 x^{-4}}{x^{21}}}\right)^{3}
$$

5. Find all values of A, given
$-180^{\circ} \leq A \leq 720^{\circ}$

$$
\csc A=-\sqrt{2}
$$

6. High tide is at 4 a.m. when the water is 6 m deep. Low tide is at 8 a.m. when the water is 1 m deep.
a) Determine the following:

Maximum: Minimum: Amplitude:
Period: Equation of Sinusoidal Axis: Phase Shift:
b) Construct a model for the height of the function over time using a cosine function, where t is the time in hours since $4 \mathrm{a} . \mathrm{m}$. and $H(t)$ is the height of the water, in metres.
c) Construct a model for the height of the function over time using a sine function, where t is the time in hours since $12 \mathrm{a} . \mathrm{m}$. and $H(t)$ is the height of the water, in metres.
7. In a geometric sequence, $t_{5}=162$ and $t_{10}=39366$. Find an expression for the nth term.
8. $\quad \$ 440$ grew to $\$ 505.45$ at $3.5 \% /$ a simple interest. For how long was the money invested?
9. $\$ 5000$ is invested at $4.3 \% /$ a compounded weekly for 18 months. How much interest is earned on the investment?

