INVESTIGATION 2: MIDPOINTS AND DIAGONALS OF QUADRILATERALS

Conclusion 3

What do you observe about the four side lengths?
Opposite sides are parallel
and eeyul length
Move the vertices A, B, C and D around. Does the relationship still hold?
yes.

What kind of quadrilateral is EFGH? (You could measure a pair of adjacent interior angles to confirm your conclusion.)
parallelogram

Conclusion 4

What do you observe about those measurements?
They are equal.

Move the vertices A, B, C and D around. Does the relationship still hold?
yes

In Task 3, you should have observed that quadrilateral EFGH was a parallelogram. What can you conclude about the diagonals of a parallelogram?

The diagonals of a parallelogram bisect each other.

Are the diagonals of the parallelogram perpendicular (ie. intersect at 90°)?
No.

TASK 5

square kite rectangle parallelogram rhombus

Name the quadrilaterals above.
Using the diagrams (and geogebra if needed) explore the answers to the following questions:

- Which of the quadrilaterals above would have diagonals that bisect each other?
- square
- rectangle
- parallelogram
- rhombus
- Which of the quadrilaterals above would have diagonals that are perpendicular?
- square
- kite
- rhombus
- Therefore, which quadrilaterals would have diagonals that are considered perpendicular bisectors (both bisect each other and intersect at 90° angles)?
- square
- rhombus

7.5 Midpoints and Diagonals in Quadrilaterals

SUMMARY:

1. Joining the midpoints of the sides of any quadrilateral produces a parallelogram.

2. The diagonals of a parallelogram \qquad each other.

$$
\begin{aligned}
\mathrm{EA} & =5.40 \mathrm{~cm} \\
\mathrm{EC} & =5.40 \mathrm{~cm}
\end{aligned}
$$

$E D=2.81 \mathrm{~cm}$

$$
\mathrm{EB}=2.81 \mathrm{~cm}
$$

