Conclusion 1

Record the three areas below.
Area ABC (polyl) =
Area $A B D$ (poly2) $=$
\qquad
Area ACD (poly3) = \qquad
What do you notice about the relationship between the three areas?
$\left|\frac{1}{2} \triangle A B C\right|=|\triangle A B D|=|\triangle A C D|$
Move the vertices A, B, and C around and record your answers below.

Area $\mathrm{ABC}($ poly 1$)=$ \qquad
Area ABD (poly2) $=$ \qquad
Area ACD (poly3) = \qquad
Does the relationship still hold? yes.

Conclusion 2A

Record your measures of the length of line BC (a) and the midsegment $\mathrm{DE}\left(\mathrm{a}_{1}\right)$.
Length of line $\mathrm{BC}=$ \qquad
Length of line $\mathrm{DE}=$ \qquad

What do you notice about the relationship between the lengths of line BC (a) and the midsegment $\mathrm{DE}\left(\mathrm{a}_{\mathrm{I}}\right)$?

$$
|D E|=\frac{1}{2}|B C|
$$

Move the vertices A, B, and C around and record the new measures of $B C$ and $D E$ below.
Length of line $\mathrm{BC}=$ \qquad
Length of line $\mathrm{DE}=$ \qquad
Does the relationship you noticed still hold true? Yes.

Conclusion 2B

Record the measures of the two triangle heights (AG - small triangle, and $\mathrm{AF}-$ big triangle) below.
Height of triangle ABC (length of AF) $=$ \qquad
Height of triangle ADE (length of AG) $=$ \qquad
What do you notice about the relationship between the two heights?
$\frac{1}{2}$ height of $\triangle A B C=$ height $\triangle A D E$

Conclusion 2B (continued)

Move the vertices A, B, and C around and record the new lengths below.
Height of triangle $A B C$ (length of $A F$) $=$ \qquad
Height of triangle ADE (length of AG) = \qquad
Does the relationship you noticed still hold true? Yes.

Conclusion 2C

Record the measure of the areas of the two triangles (ADE - small triangle and ABC - big triangle) below.
Area of $\mathrm{ADE}=$ \qquad
Area of $A B C=$ \qquad
What do you notice about the relationships between the two triangle areas?

$$
\frac{1}{4}(\triangle A B C)=\mid \triangle A D E
$$

Move the vertices A, B, and C around and record the new measures below.
Area of $\mathrm{ADE}=$ \qquad
Area of $\mathrm{ABC}=$ \qquad

Does the relationship you noticed still hold true?

Conclusion 2D

Record the measures of the two angles below.
Angle ABC = \qquad
Angle $\mathrm{ADE}=$ \qquad
What do you notice about the relationship between the two angles?

$$
\angle A B C=\angle A D E
$$

Move the vertices A, B, and C around and record the new angle measures below.

Angle $\mathrm{ABC}=$ \qquad
Angle ADE = \qquad
Does the relationship you noticed still hold?
yes.

What can we conclude about the midsegment and the base of the large triangle based on the measures of those angles?
midsegment DE is parallel to BC

SUMMARY of Key Concepts:

1. The
 of a triangle \qquad its area.

Area $1=$ Area 2
Area $1=\frac{1}{2}$ Area ABC
Area $2=\frac{1}{2}$ Area ABC
\qquad

TERMINOLOGY
Midpoint: A point that divides a line segment into two equal segments.

Median: the line segment joining a vertex of a triangle to the midpoint of the opposite side.

Bisect: Divide into two equal parts

Right Bisector: A line perpendicular to a line segment passing through its midpoint.
2. A line segment joining the midpoints of two sides of a triangle is parallel \qquad to the third side and is \qquad as long
3. The height of a triangle formed by joining the midpoints of two sides of a triangle is half \qquad the height of the original triangle.

4. The area of the triangle formed by joining the midpoints of two sides of a triangle is one quarter the area of the original triangle.
** NOTE: Your homework may ask you to prove something is not true by showing a COUNTER - EXAMPLE. This just means draw an example where you show what they are saying is not true.

