INVESTIGATION 1: MIDPOINTS AND MEDIANS IN TRIANGLES

Conclusion 1
Record the three areas below.
Area ABC $(poly1) =$
Area ABD ($poly2$) =
Area ACD (poly3) =
What do you notice about the relationship between the three areas?
what do you notice about the relationship between the timee areas:
$ \frac{1}{2} \wedge ABC = \Delta ABD = \Delta ACD $
Move the vertices A. P. and C. around and record your answers helow
wove the vertices A,D, and C around and record your answers below.
$\Delta ran \Delta BC (rabul) =$
$A_{\text{res}} A_{\text{DD}} (\text{poly1}) = $
$Area ABD (poly2) = \$
Area ACD (poly3) =
Does the relationship still hold? yes,
Conclusion 2A
Record your measures of the length of line BC (a) and the midsegment DE (a ₁).
Length of line $BC =$
Length of line $DE =$
B
What do you notice about the relationship between the lengths of line BC (a) and the midsegment DE (a_1) ?
$ DE = \frac{1}{2} BC $
Move the vertices A B and C around and record the new measures of BC and DF below
wove the vertices A,D, and C around and record the new measures of DC and DL below.
Length of line $PC =$
$Length of line DC = _$
Length of line $DE = $
\mathbf{D} of 1 of 1 and 1 or $\sqrt{25}$
Does the relationship you noticed still hold true? y = 3 '
Conclusion 2B
Record the measures of the two triangle heights (AG – small triangle, and AF – big triangle) below.
Height of triangle ABC (length of AF) =
Height of triangle ADE (length of AG) =
What do you notice about the relationship between the two heights?
I hill have a basel A A AC
= height of DABC = height DADE
± height of DABC = height DADE

Move the vertices A,B, and C around and record the new lengths below.
Height of triangle ABC (length of AF) = Height of triangle ADE (length of AG) =
Does the relationship you noticed still hold true? $\gamma e \leq \cdot$
Conclusion 2C Record the measure of the areas of the two triangles (ADE – small triangle and ABC – big triangle) below. Area of ADE = Area of ABC =
What do you notice about the relationships between the two triangle areas? $\frac{1}{4} (\Delta ABC) = \Delta ADE$
Move the vertices A, B, and C around and record the new measures below. Area of ADE = Area of ABC =
Does the relationship you noticed still hold true? yes,
$\frac{\text{Conclusion 2D}}{\text{Record the measures of the two angles below.}}$ $Angle ABC = _ _ _$ $Angle ADE = _ _ _ _$
What do you notice about the relationship between the two angles? $\angle ABC = \angle ADE$
Move the vertices A,B, and C around and record the new angle measures below.
Angle ABC = Angle ADE =
Does the relationship you noticed still hold? \sqrt{eS} .
What can we conclude about the midsegment and the base of the large triangle based on the measures of those angles? midsegment DE is parallel to BC

SUMMARY of Key Concepts:

TERMINOLOGY Midpoint: A point that divides a line segment into two equal segments.

<u>Median</u>: the line segment joining a vertex of a triangle to the midpoint of the opposite side.

Bisect: Divide into two equal parts

<u>Right Bisector</u>: A line perpendicular to a line segment passing through its midpoint.

2. A line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half as long

3. The height of a triangle formed by joining the midpoints of two sides of a triangle is $h_{\alpha}|_{F}$ the height of the original triangle.

- 4. The area of the triangle formed by joining the midpoints of two sides of a triangle is <u>one quarter</u> the area of the original triangle.
- ** NOTE: Your homework may ask you to prove something is not true by showing a COUNTER EXAMPLE. This just means draw an example where you show what they are saying is not true.