\qquad

Surface Area of Cones

A cone is a three dimensional solid with a circular base. The lateral surface is curved and extends from the base to a point called the vertex.

Developing a formula for surface area of a cone:

end

The lateral surface is a circle-sector. This sector is some fraction (one $n^{\text {th }}$) of a circle with radius s.

$$
A_{\text {sector }}=
$$

The circumference of the sector is one $n^{\text {th }}$ of the circumference of the whole circle with radius s.

$$
C_{\text {sector }}=
$$

Since the circumference of the sector wraps around the circumference of the base (which is a circle with radius
$r), C_{\text {sector }}=C_{\text {base circle }}$

Substituting this into $A_{\text {sector }}=$
, we get $A_{\text {lateral side }}=$
$=$
$=$

So, the formula for Surface area of a cone is:
\square
Example 1: Calculate the surface area of a waffle cone (before it is filled with ice cream) with height 4.2 cm and radius 1.8 cm .

\qquad
Example 2: The slant height of a cone is tripled. Does this triple the surface area of the cone? Explain.

Example 3: A cone is formed from a circle with a 90° sector removed. Another cone is formed from a semicircle with the same radius. How do the two cones differ? How are they the same?

Example 4: The lateral area of a cone with slant height 14 cm is $132 \mathrm{~cm}^{2}$.
a) Find the radius of the cone, to the nearest cm .
b) Find the height of the cone, to the nearest tenth of a cm.

Example 5: An old construction pylon needs to be painted. The base the pylon sits on is 20 cm by 20 cm by 1.5 cm , the radius of the cone is 8 cm and the height of the pylon is 31 cm . If only the part that shows is to be painted, find the surface area to be painted to the nearest hundredth.

