Optimization of a Cylinder

Investigation A: How can you compare the volumes of cylinders with the same surface area?
Many products come in cylinders. Your task is to design a cylindrical juice can that uses no more than $375 \mathrm{~cm}^{2}$ of aluminum. The can should have the greatest capacity possible.

1. To investigate the volume of the cylinder as its radius changes, you will need an expression for the height in terms of the radius, given that the surface area is $375 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
S A & =2 \pi r^{2}+2 \pi r h \\
2 \pi r h & =S A-2 \pi r^{2} \\
h & =\frac{S A-2 \pi r^{2}}{2 \pi r}
\end{aligned}
$$

2. Complete the table below by calculating the height and volume of each cylinder. $V=\pi r^{2} h$

3. REFLECT: Summarize your Findings
a) What is the maximum volume for the cans in your table? And what are the radius and height of the can with the volume? Max, volume is $548 \mathrm{~cm}^{3}$ when $r=4(d=e), h=10.9$
b) What relationship do you notice between the radius and height? closest to $d=h$
c) Do these dimensions give the optimal volume for the surface area of $375 \mathrm{~cm}^{2}$? How could you extend your investigation to determine the dimensions of a can with a volume greater than the value in the table? How can you solve for the dimensions algebraically?

No. Include decimal radi"
set $h=2 r$
$A_{+d}=2 \pi r^{2}+2 \pi r(2 r)$ $\begin{gathered}\text { substitute } \\ h=2 r\end{gathered}$
$A_{\text {tad }}=2 \pi r^{2}+4 \pi r^{2}$
$A_{\text {tada }}=6 \pi r^{2}$

Isolate r in $S A=6 T r^{2}$

$$
\frac{A_{+\pi b l}}{6 \pi}=\frac{6 \pi r^{2}}{6 \pi}
$$

$$
\sqrt{\frac{A_{1} \text { arin }}{6 \pi}}=\sqrt{r^{2}}, r>0
$$

$$
r=\sqrt{\left[A_{\tan } \div(6 \pi)\right]}
$$

Example 1 Maximize the Volume of a Cylinder
a) Determine the dimensions of the cylinder with maximum volume that can be made with $600 \mathrm{~cm}^{2}$ of aluminum. Round the dimensions to the nearest hundredth of a centimetre.

$$
\begin{aligned}
& r=\sqrt{600} \text { Gif you remember longer } \rightarrow 2 \pi r^{2}+2 \pi r(2 r)=600 \\
& =\sqrt{\frac{600}{6 \pi}} \\
& r=\sqrt{5 A \div 6 \pi} \\
& r \doteq 5.64 \\
& h \doteq 11.28 \text { (recall: } h=2 r \text {) } \\
& \text { '. the oftimal cylinder has } r=5.64 \mathrm{~cm}, h=11.28 \mathrm{~cm} \\
& \text { b) What is the volume of this cylinder, to the nearest cubic centimetre? } \\
& V=\pi r^{2} h \\
& \begin{array}{l}
V=\pi(5.64)^{2}(11.28) \\
V=1127 \mathrm{~cm}^{3}
\end{array}
\end{aligned}
$$

4. Pyramid of Khafre in Egypt is a square based pyramid that reaches a height of 146 m and its square base has side lengths of 226 m .
a) Calculate the surface area of the lateral faces of this pyramid. Round your answer to one decimal place.
$146 \begin{aligned} & 5 s \\ & s^{2}=146^{2}+113^{2} \\ & s^{2}=34085 \\ & s=\sqrt{34085} \\ & s=184.6212339\end{aligned}$

$$
\begin{aligned}
& A_{\text {lateral }}=A_{4 \Delta \prime s} \\
& \text { faces } \\
&=2 b s \\
&=2(226)(\sqrt{34085}) \\
&=83448.79771 \ldots \\
& \doteq 83448.8
\end{aligned}
$$

b) What is the volume of this pyramid? [2 marks] : the area of the

$$
V=\frac{b^{2} h}{3} \quad \begin{aligned}
& \text { lateral faces is } \\
& 83448.8 \mathrm{~m}^{2} .
\end{aligned}
$$

$$
V=226^{2}(146) \div 3
$$

$$
\begin{aligned}
& =2485698.667 \quad \text { 'the volume of the pyramid is } 2485698.7 \mathrm{~m}^{2} \\
& =2485698.7
\end{aligned}
$$

5. The surface area of sphere A is double the surface area of sphere B. The radius of sphere B is 5 cm .
a) What is the surface area of each sphere? [3 marks] $A_{\text {sphere }}=4 \pi r^{2}$

$$
\begin{aligned}
& A_{\text {sphere B }}=4 \pi(5)^{2} \quad A_{\text {sphere } A} \\
&=2 A_{\text {sphere B }} \\
&=100 \pi \\
&=200 \pi \\
& \doteq 614.2
\end{aligned}
$$

\therefore the surface area of sphere A is $628.3 \mathrm{~cm}^{2}$, sphere B is $314.2 \mathrm{~cm}^{2}$.
b) What is the radius of sphere A? [3 marks]
Option 1:
doubling A means

$$
2\left(4 \pi r^{2}\right) \quad \text { So sphere A radius }
$$

$$
\frac{\text { Option 2: }}{4 \pi^{\prime} r^{2}}=200 \pi
$$

$$
=4 \pi\left(2 r^{2}\right) \quad \text { is } \sqrt{2}(5)
$$

$$
=4 \pi(\sqrt{2})^{2}=7.07 \ldots
$$

$$
\begin{aligned}
& r^{2}=50 \\
& r=\sqrt{50}, r>0 \\
& r \doteq 7.1 \mathrm{~cm}
\end{aligned}
$$

6. Two square-based prisms both have a volume of $729 \mathrm{~cm}^{3}$. Prism A has a base area of $9 \mathrm{~cm}^{2}$, prism B has a base area of $81 \mathrm{~cm}^{2}$.

$$
\begin{array}{ll}
\text { Prism A } & \text { Prism B } \\
b^{2} h=729 \\
9 h=729 & \\
h=81 & b^{2} h=729 \\
h 1 h=729 \\
h=9
\end{array}
$$

\therefore Prism A has a height of 81 cm , Prism B has a height of 9 cm
b) Is either of these prisms optimal (the minimum surface area) for the given volume? Explain. [2 marks]

$$
\text { Prism B is optimal It is a cube } 9 \mathrm{~cm} \times 9 \mathrm{~cm} \times 9 \mathrm{~cm} \text {. }
$$

