\qquad
Date \qquad

Optimization of a Square Based Prism

Investigation A: How can you compare the surface areas of square-based prisms with the same volume?

1. Use 16 interlocking cubes to build as many different square-based prisms as possible with a volume of 16 cubic units.
2. Calculate the surface area of each prism. Record your results in a table.

Length	Width	Height	Volume	Surface Area

3. What are the dimensions of the square-based prism that has the minimum, or optimal, surface area?
4. Describe the shape of this prism compared to the other prisms.
5. Predict the dimensions of the square-based prism with minimum surface area if you use:
a) 27 cubes
b) 64 cubes
c) 125 cubes
6. REFLECT: Summarize your findings.
a) Do any relationships exist between the length, width, and height of a square-based prism with minimum surface area for a given volume?
b) What is the ideal shape for minimizing the surface area of a square-based prism when given a fixed volume?
c) How can you predict the dimensions of a square-based prism with minimum surface area if you know the volume?

EX. 1. Cardboard Box Dimensions.
a) The Pop-a-Lot popcorn company ships kernels of popcorn to movie theatres in large cardboard boxes with a volume of $500,000 \mathrm{~cm}^{3}$. Determine the dimensions of the square-based prism box, to the nearest tenth of a centimeter, the will require the least amount of cardboard.
b) Find the amount of cardboard required to make this box, to the nearest tenth of a square metre. Describe any assumptions you have made.

Investigation B: How can you compare the volumes of square-based prisms with the same surface area?

1. Each of the square-based prisms below has a surface area of $24 \mathrm{~cm}^{2}$. Calculate the area of the base and the volume of each prism. Record your data in the table.

	Prism 1:	Prism 2:	Prism 3:	$\int_{3 \mathrm{~cm}} 0.5 \mathrm{~cm}$	
Prism Number	Side length of base (cm)	Area of base (cm^{2})	Surface area $\left(\mathrm{cm}^{2}\right)$	Height (cm)	Volume (cm^{3})
1			24		
2			24		
3			24		

2. What are the dimensions of the square-based prism that has the maximum, or optimal, volume?
3. Describe the shape of this prism compared to the other prisms.
4. Predict the dimensions of the square-based prism with maximum volume if the surface area is $54 \mathrm{~cm}^{2}$.
5. REFLECT: Summarize your findings.
a) Do any relationships exist between the length, width, and height of a square-based prism with maximum volume for a given surface area?
b) What is the ideal shape for maximizing the volume of a square-based prism when given a fixed surface area?
c) How can you predict the dimensions of a square-based prism with maximum volume if you know the surface area?
EX. 2. Maximize the Volume of a Square-Based Prism
a) Determine the dimensions of the square-based prism with maximum volume that can be formed using $5400 \mathrm{~cm}^{2}$ of cardboard.
b) What is the volume of the prism?
