\qquad
Date \qquad

Optimization of a Square Based Prism

Investigation A: How can you compare the surface areas of square-based prisms with the same volume?

1. Use 16 interlocking cubes to build as many different square-based prisms as possible with a volume of 16 cubic units.
2. Calculate the surface area of each prism. Record your results in a table.

Length	Width	Height	Volume (17) Surface Area $\left(11^{2}\right)$	
4	4	1	16	$2(16)+4(4)$ $=48$
1	1	16	16	$2(1)+4(16)$
2	2	4	16	$2(4)+4(6)$ $=40$

3. What are the dimensions of the square-based prism that has the minimum, or optimal, surface area?

$$
2 \text { units } \times 2 \text { units } \times \text { units }
$$

4. Describe the shape of this prism compared to the other prisms.
closest to a cube
5. Predict the dimensions of the square-based prism with minimum surface area if you use:
a) 27 cubes
b) 64 cubes
c) 325 cubes
$4 x+\times 4$

$$
5 \times 5 \times 5
$$

6. REFLECT: Summarize your findings.
a) Do any relationships exist between the length, width, and height of a square-based prism with minimum surface area for a given volume? $\quad l=(N)=h$
b) What is the ideal shape for minimizing the surface area of a square-based prism when given a fixed volume? a cube
c) How can you predict the dimensions of a square-based prism with minimum surface area if you know the volume? * take the cubed rout $V=x^{3}$ so, $x=\sqrt[3]{V}$

EX. 1. Cardboard Box Dimensions.
a) The Pop-a-Lot popcorn company ships kernels of popcorn to movie theatres in large cardboard boxes with a volume of $500,000 \mathrm{~cm}^{3}$. Determine the dimensions of the square-based prism box, to the nearest tenth of a centimeter, the will require the least amount of cardboard.

$x=79.4 \mathrm{~cm}$ is optimal. cents.
b) Find the amount of cardboard required to make this box, to the nearest tenth of a squaremetre. Describe any assumptions you have made.

$$
\begin{aligned}
A_{\text {TOTAL }} & A_{\text {squares }} \\
& =6 x^{2} \\
& =6(79.4)^{2} \\
& =37826.16 \\
& =37826.2
\end{aligned}
$$

Assume: no extra needed for
seams
no waste
ste.
\therefore the surface area is $-398210.2 \mathrm{~cm}^{2}$

Investigation B: How can you compare the volumes of square-based prisms with the same surface area?

1. Each of the square-based prisms below has a surface area of $24 \mathrm{~cm}^{2}$. Calculate the area of the base and the volume of each prism. Record your data in the table.

2. What are the dimensions of the square-based prism that has the maximum, or optimal, volume?

$$
2 \times 2 \times 2
$$

3. Describe the shape of this prism compared to the other prisms. a, c be
4. Predict the dimensions of the square-based prism with maximum volume if the surface area is $54 \mathrm{~cm}^{2}$.

$$
\begin{gathered}
6 x^{2}=54 \\
2=9
\end{gathered}
$$

recall:
$A_{\text {total cube }}=6 x^{2}$
5. REFLECT: Summarize your findings.
a) Do any relationships exist between the length, width, and height of a square-based prism with maximum volume for a given surface area? $\quad l=\omega=h$
b) What is the ideal shape for maximizing the volume of a square-based prism when given a fixed surface area?
a cube
c) How can you predict the dimensions of a square-based prism with maximum volume if you know the surface area? $A_{\text {total }}=6 x^{2}$, solve for x.
EX. 2. Maximize the Volume of a Square-Based Prism
a) Determine the dimensions of the square-based prism with maximum volume that can be formed using $5400 \mathrm{~cm}^{2}$ of cardboard.

$$
\begin{aligned}
& A_{\text {total }}=A_{\text {squares }} \\
& 5400=6 x^{2}
\end{aligned}
$$

b) What is the volume of the prism?

$$
\begin{aligned}
& V=x^{3} \\
& V=30^{3} \\
& V=27000 \mathrm{~cm}^{3}
\end{aligned}
$$

volume is
$27000 \mathrm{~cm}^{3}$.
$6 x^{2}=5400$
$x^{2}=900$
$x=\sqrt{900}, x>0$
$x=30 \mathrm{~cm} \quad \therefore$ the cube should have side lengths 30 cm to maximize volute. Pg 495 \#2, 3, Fa, 7 \& Pg 501 \#2, 3, 6, 7

