Name:

Date

Optimization of a Square Based Prism

Investigation A: How can you compare the surface areas of square-based prisms with the same volume?

- 1. Use 16 interlocking cubes to build as many different square-based prisms as possible with a volume of 16 cubic units.
- 2. Calculate the surface area of each prism. Record your results in a table.

Length	Width	Height	Volume	🕈 Surface Area 🕕
4	4	1	16	a(16) + 4(4) = 48
1	1	16	16	2(1) + 4(16) = 66
2	2	4	16	2(4) + 4(6) = 40

3. What are the dimensions of the square-based prism that has the minimum, or optimal, surface area? 2 units x 2 units x tupits

Describe the shape of this prism compared to the other prisms. 4.

closest to a cube

= 37826.2

5. Predict the dimensions of the square-based prism with minimum surface area if you use:

a)	27 cubes	b)	64 cubes	c)	125 cubes
	3×3×3		エメナメチ		5×5×5

6. **REFLECT:** Summarize your findings.

Do any relationships exist between the length, width, and height of a square-based prism with a) l=u)=h minimum surface area for a given volume?

What is the ideal shape for minimizing the surface area of a square-based prism when given a fixed b) volume? a cube

c) How can you predict the dimensions of a square-based prism with minimum surface area if you know the volume? * take the cubed rout $V = x^3$ so, $x = \sqrt[3]{V}$

EX. 1. Cardboard Box Dimensions.

b)

The Pop-a-Lot popcorn company ships kernels of popcorn to movie theatres in large cardboard a) boxes with a volume of 500,000 cm³. Determine the dimensions of the square-based prism box, to the nearest tenth of a centimeter, the will require the least amount of cardboard.

$$V = \sqrt{500} \qquad V = 500000, \quad V = \chi^{3}$$

$$\chi^{3} = 500000 \qquad \text{i. a cube with}$$

$$50, \quad \chi = \sqrt{500000} \qquad \text{sidelengths 77.4cm}$$
Find the amount of cardboard required to make this box, to the nearest tenth of a square metre.
Describe any assumptions you have made.

$$A = A \qquad \text{Assume : no extra needed for}$$

$$= 6 \chi^{2} \qquad \text{seams} \qquad \text{no waste} \qquad \text{etc} \qquad \text{owaste} \qquad \text{etc} \qquad \text{state a read is} \qquad \text{state a read i$$

Investigation B: How can you compare the volumes of square-based prisms with the same surface area?

Each of the square-based prisms below has a surface area of 24 cm². Calculate the area of the base and 1. the volume of each prism. Record your data in the table.

	Prism 1: 5.5 cm 1 cm 1 cm	Prism 2: 2 cm 2 cm	Prism 3:	0.5 cm 3 cm			
Prism Number	Side length of base (cm)	Area of base (cm²)	Surface area (cm ²)	Height (cm)	Volume (cm ³)		
1	1	L	24	5.5	55		
2	2	2	24	2	8		
3	3	(V)	24	0.5	45		
2. What are the dimensions of the square-based prism that has the maximum, or optimal, volume? $2 \times 2 \times 2$							
3. Describe the shape of this prism compared to the other prisms. $o_{-} < 0$							
4. Predict the dimensions of the square-based prism with maximum volume if the surface area is 54 cm $6\chi^2 = 54$ $\chi = 3$, $\chi > 0$ $10\chi^2 = 54$ $\chi = 3$, $\chi > 0$ $10\chi^2 = 54$ $\chi = 6\chi^2$							

5. **REFLECT:** Summarize your findings.

Do any relationships exist between the length, width, and height of a square-based prism with a) l=w=h maximum volume for a given surface area?

What is the ideal shape for maximizing the volume of a square-based prism when given a fixed surface b) a cube area?

How can you predict the dimensions of a square-based prism with maximum volume if you know the c) surface area? $A_{total} = 6x^2$, solve for x.

EX. 2. Maximize the Volume of a Square-Based Prism

Determine the dimensions of the square-based prism with maximum volume that can be formed using a) 5400 cm² of cardboard. $6x^2 = 5400$

 $A_{total} = A_{6squares}$ 5400 = $6x^2$

What is the volume of the prism? b)

f cardboard. A $_{total} = A_{6squares}$ $+00 = 6x^{2}$ at is the volume of the prism? $V = x^{3}$ $V = 30^{3}$ $V = 27000 \text{ cm}^{3}$ $6x^{2} = 5400$ x = 900 $x = \sqrt{900}, x > 0$ X = 30 cm $y = 400 \text{ cm}^{3}$ x = 30 cm $y = 27000 \text{ cm}^{3}$ $y = 27000 \text{ cm}^{3}$ Pg 495 #2, 3, 5a, 7 & Pg 501 #2, 3, 6, 7