MPM 1DI Unit 9 lesson 6 (8.7)
Name: \qquad
Date:
Warm up: Jared has a ball of chocolate wrapped with foil measuring a total of $8 \mathrm{~cm}^{2}$. Kate has a ball of chocolate that is twice the radius of Jared's. How much foil is needed to wrap Kate's chocolate ball? y_{2} if r is multiplied by 2, Surface Area is multiplied
by $2^{2}\left(A=4 \pi r^{2}\right) .8 \times 2^{2}=\quad$ Kate needs foil to cover

$$
=32 \mathrm{~cm}^{2}
$$

$32 \mathrm{~cm}^{2}$.

Volume of Spheres

$$
\text { Volume of a Sphere: } V=\frac{4}{3} \pi r^{3} \text { or } V=\frac{4 \pi r^{3}}{3}
$$

Example 1: A spherical piñata has a diameter of 22 cm . One litre of candy weighs one kilogram and candy costs $\$ 0.79 / 100 \mathrm{~g}$, How much will it cost to fill the piñata - don't forget to include 13% taxes. (recall: 1
 $\left.\mathrm{cm}^{3}=1 \mathrm{~mL}\right) \quad r=11 \mathrm{~cm}$

$$
V=\frac{4 \pi(11)^{3}}{3}
$$

$$
=5575.27976 \ldots \mathrm{~mL}
$$

$$
\begin{aligned}
& \frac{\$ 0.79}{100 \mathrm{~g}} \times 10 \\
& =\$ 7.90 / \mathrm{kg}
\end{aligned}
$$

$$
=5.575 \mathrm{~L}
$$

$$
\text { Cost }=5.575 \times 7.90 \times 1.13
$$

$$
\doteq 49.77
$$

$$
=5.575 \mathrm{~kg}
$$

\therefore it will cost
Example 2: The radius of a sphere is tripled. How does this affect the volume of the sphere? Explain.

$$
V=\frac{4}{3} \pi r^{3} \quad \text { When } r \text { is tripled, Volume is } 3^{3}=27 \text { times larger. }
$$

Example 3: A spherical gemstone just fits inside a plastic cube with edges 10 cm .
a) Calculate the volume of the gemstone, to the nearest cubic centimetre.

$$
V=\frac{4 \pi(5)^{3}}{3}
$$

$=523.598 \ldots$
$\pm 524 \mathrm{~cm}^{3}$
b) How much empty space is there?
$V_{\text {space }}=V_{\text {cube }}-V_{\text {sphere }}$
$=10^{3}-524$
Example 4: A snowball with volume $237 \mathrm{~cm}^{3}$ has a mass of 28 g . What is the mass of a snowball with a radius 38 cm ?
use rates

$$
\begin{aligned}
& V=\frac{4 \pi(38)^{3}}{3} \\
& V=229847.2961 \\
& V=229847.2961
\end{aligned}
$$

$$
\frac{\operatorname{grams}}{\mathrm{cm}^{3}}
$$

$$
\frac{28}{237}=\frac{x}{229847.2961}
$$

$$
x=\frac{28 \times 229847.2961}{237}
$$

$$
x=27154.95 \mathrm{grams}
$$

$$
x=27.2 \mathrm{~kg} .
$$

Ps. 465-467 \# ia, 3, 4, 5,7,8,9,12,14,15,16 Challenge: 18, 19 \#5 answer is wrong in back of text

$$
2157560.8 \mathrm{~g} \text { OR } 2157.6 \mathrm{~kg}
$$

