Warm Up: A frustum may be formed from a right circular cone by cutting off the tip of the cone with a cut nernendirular to the height, forming a lower base and an upper base that are circular and parallel.
 A 0.41 caliber bullet has a diameter of 9.8 mm and a case length of 28.9 mm . The cylindrical portion of the bullet has a case length of 15 mm . The top of the bullet is a frustum. The "missing cone tip" has a damsel of 5.5 mm and a height of 20 mm . Calculate the volume of the bullet.

$$
V=V_{\theta}+V_{\Delta}-V_{0} \quad V=\pi(4.9)^{2}(1.5)+\frac{\pi(4.9)^{2}(33.9)}{3}-\frac{\pi(2.75)^{2}(20)}{3} \quad V=1825.4 \mathrm{~mm}^{3}
$$

Surface Area of Spheres \therefore the volume of the bullet is about

A sphere is a round ball-shaped three dimensional solid. Every point on the surface of the sphere is the same 1825.4 distance from the centre of the sphere.
Orange Demonstration:
https://www.youtube.com/watch?v=FB-am7d0zU Demonstration using Surface Area of Cylinder:
Another Video of interest:
https://www.youtube.com/watch?v=Fyvq-jIQKr8
https://www.youtube.com/watch?v=T DBkFnr 4NM
Surface Area of a Sphere: $A_{\text {total }}=4 \pi r^{2}$
Example 1: An adult human eyeball has a diameter of 2.5 cm . Calculate the surface area of the eyeball, to the nearest tenth of a square centimeter. $\quad r=1.25 \mathrm{~cm}$

$$
\begin{aligned}
& A_{\text {total }}=4 \pi(1.25)^{2} \\
&=19.63 \ldots \\
&=19.6 \mathrm{~cm}^{2} \\
& \therefore \text { the surface area of the eyeball is } 19.6 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 2: The radius of a sphere is tripled. Does this triple the surface area of the sphere? Explain.

$$
A=4 \pi r^{2} \quad \begin{array}{ll}
\text { When } r \text { is tripled, } A \text { is } 3^{2}=9 \text { times } \\
\text { larger. }
\end{array}
$$

Example 3: The surface area of an orange is $147 \mathrm{~cm}^{2}$. What is the diameter of the orange? Round your answer to two decimal places.

$$
\begin{aligned}
4 \pi r^{2} & =A \text { total } \\
4 \pi r^{2} & =147 \\
r^{2} & =\frac{147}{4 \pi} \\
r & =\sqrt{\frac{147}{4 \pi}}, r>0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
r=3.4202 \ldots \\
2 r \doteq 6.84 \\
d \doteq 6.84 \\
\therefore \text { the diameter of the orange } \\
\text { is about } 6.84 \mathrm{~cm} .
\end{array}\right.
$$

Example 4:

 A spherical balloon is blown up, covered in paper mache and painted. The surface area of the masterpiece is $400 \pi \mathrm{~cm}^{2}$. A hole is drilled through the sphere in order to hang the sphere like a necklace from the ceiling. The chain used to hang the sphere must be 1.2 m on either side of the sphere. The chain costs $\$ 48 / \mathrm{m}$, what is the total cost of the chain including 13% taxes?$$
\begin{array}{rlrl}
4 \pi r^{2} & =400 \pi \quad \text { chain length } & =1.2+0.2+1.2 \\
& =2.6 \mathrm{~m} \\
r^{2} & =\frac{400 \pi}{4 \pi} \\
r^{2} & =100 \quad \text { cost } & =2.6 \times 48 \times 1.13 \\
r & =10, r>0 \\
& =141.024 \\
\text { diameter is } 20 \mathrm{~cm}=0.2 m & & =141.02
\end{array} \quad \therefore \text { th } .
$$

Ps. 459-460\#1b,2-6,8,11,12

