\qquad
\qquad
Warm Up: QUIZ on Surface Area and Volume of Prisms, Pyramids, Cylinders and Surface Area of Cones.

Volume of Cones

A cylinder is a three dimensional solid with identical parallel circular bases. The lateral surface is curved and extends from one base to the other base.

The volume of a cylinder is the same as a prism:

$$
\begin{aligned}
V & =A_{\text {base }} \times \text { height } \\
\text { or } V & =
\end{aligned}
$$

Similar to the relationship between the pyramid and the prism, the volume of a cone is one third the volume of a prism with the same radius and height.

$$
\begin{aligned}
& \text { Volume of a cone }=A_{\text {base }} \times \text { height } \\
& \text { or, } \quad V_{\text {cone }}=\text { or }
\end{aligned}
$$

Example 1: Calculate the volume of a cone with radius 3 mm and height 7 mm .

Example 2:
a) If the height of a cone is tripled, does this triple the volume? Explain.
b) If the radiu)s of a cone is tripled, does this triple the volume? Explain.

Example 3: A grain bin has a radius of 12 ft and a height of 48 ft . How much grain will the farmer need to order to fill the bin? (Note: 1 kg of grain fills $1 \mathrm{ft}^{3}$ of space. Also, assume grain (oats) is ordered in tonnes (1 metric ton $=1000 \mathrm{~kg}$).) (Note: the cone portion has a height of 18 feet)

Example 4: A conical pile of sand has a base diameter of 10 m and a slant height of 8 m . Determine the volume of the sand in the pile, to the nearest cubic metre.

Example 5: A fountain firework is packaged in a conical container. Its volume is $210 \mathrm{~m}^{3}$. Its diameter is 8 cm . What is the height of the fountain firework, to the nearest tenth of a centimeter?

