\qquad
Date:
Warm Up: QUIZ on Surface Area and Volume of Prisms, Pyramids, Cylinders and Surface Area of Cones.

Volume of Cones

A cylinder is a three dimensional solid with identical parallel circular bases. The lateral surface is curved and extends from one base to the other base.

The volume of a cylinder is the same as a prism:

$$
\begin{aligned}
V & =A_{\text {base }} \times \text { height } \\
\text { or } V & =
\end{aligned}
$$

Similar to the relationship between the pyramid and the prism, the volume of a cone is one third the volume of a prism with the same radius and height.

$$
\begin{aligned}
& \text { Volume of a cone }=\frac{1}{3} \text { A base } \times \text { height } \\
& \text { or. } \quad V_{\text {cane }}=\frac{1}{3} \pi r^{2} h \text { or } \frac{\pi r^{2} h}{3}
\end{aligned}
$$

Example 1: Calculate the volume of a cone with radius 3 mm and height 7 mm .

$$
\begin{aligned}
V & =\frac{\pi r^{2} h}{3} \\
V & =\frac{\pi(3)^{2}(7)}{3} \\
& =21 \pi \\
& =65.973 \ldots \mathrm{~mm}^{3}
\end{aligned}
$$

Example 2:

a) If the height of a cone is tripled, does this triple the volume? Explain.

$$
\begin{aligned}
& V=\frac{\pi r^{2} h^{2}}{3} \quad \text { Multiplying the Right side of the equation } \\
& \text { by } 3 \text { will result in triple the value on } \\
& \text { the left side. }
\end{aligned}
$$

b) If the radius of a cone is tripled, does this triple the volume? Explain.

$$
V_{\text {cone }}=\frac{\pi r^{2} h}{3} \times 3 \text { means } V \text { will be } 3^{2}=9 \text { times larger }
$$

Example 3: A grain bin has a radius of 12 ft and a height of 48 ft . How much grain will the farmer need to order to fill the bin? (Note: 1 kg of grain fills $1 \mathrm{ft}^{3}$ of space. Also, assume grain (oats) is ordered in tonnes (1 metric ton $=1000 \mathrm{~kg}$).) (Note: the cone portion has a height of 18 feet)

$$
\begin{aligned}
V_{\text {total }} & =V_{\text {cylinder }}+V_{\text {cone }} \\
& =\pi r^{2} h+\frac{\pi r^{2} h}{3} \\
& =\pi(12)^{2}(30)+\frac{\pi^{2}(12)^{2}(18)}{3} \\
& =13571.68+2714.33 \\
& \doteq 16286 \mathrm{ft}^{3} \\
& =16286 \mathrm{~kg} \\
& \doteq 16.2 \text { tonnes }
\end{aligned}
$$

\therefore the farmer must order 16.2 tonnes of grain.

Example 4: A conical pile of sand has a base diameter of 10 m and a slant height of 8 m . Determine the volume of the sand in the pile, to the nearest cubic metre.

$$
\begin{aligned}
V & =\frac{\pi r^{2} h}{3} \\
& =\frac{\pi(5)^{2}(\sqrt{39})}{3} \\
& =163.49366 \cdots \\
& =163 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& h^{2}=s^{2}-r^{2} \\
& h^{2}=8^{2}-5^{2} \\
& n^{2}=39 \\
& h=\sqrt{39}, n>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { the volume of sand is } \\
& \text { about } 163 \mathrm{~m}
\end{aligned}
$$

$$
\text { about } 163 \mathrm{~m}^{3} \text {. }
$$

Example 5: A fountain firework is packaged in a conical container. Its volume is $210 \mathrm{~m}^{3}$. Its diameter is 8 cm . What is the height of the fountain firework, to the nearest tenth of a centimeter?

$$
V=\frac{\pi r^{2} h}{3}
$$

$$
210=\frac{\pi(4)^{2} h}{3}
$$

$$
210 \times \frac{3}{16 \pi}=h
$$

$$
\begin{aligned}
& h=12.533 \ldots \\
& h \doteq 12.5
\end{aligned} \quad \therefore \text { the height is } 12.5 \mathrm{~cm} .
$$

