\qquad

Surface Area of Cones

A cone is a three dimensional solid with a circular base. The lateral surface is curved and extends from the base to a point called the vertex.

Developing a formula for surface area of a cone:

The lateral surface is a circle-sector. This sector is
 some fraction (one $\eta^{\text {th }}$) of a circle with radius s.

$$
A_{\text {sector }}=\frac{\pi S^{2}}{n}
$$

The circumference of the sector is one $n^{\text {th }}$ of the circumference of the whole circle with radius s.

$$
C_{\text {sector }}=\frac{2 \pi s}{n}
$$

Since the circumference of the sector wraps around the circumference of the base (which is a circle with radius
r), $C_{\text {sector }}=C_{\text {bose circle }}$

$$
\begin{aligned}
\div 2 \pi \frac{2 \pi s}{n} & =2 \pi r \\
\frac{s}{n} & =r
\end{aligned}
$$

$\begin{aligned} \text { Substituting this into } A_{\text {sector }}=\frac{\pi s^{2}}{n} \quad, \text { we get } A_{\text {lateral side }} & =\frac{\pi s \cdot s}{n} \\ & =\pi s(r)\end{aligned}$

So, the formula for Surface area of a cone is:

$$
\begin{aligned}
A_{\text {total }} & =A_{\text {base }}+A_{\text {lateral side }} \\
& =\pi r^{2}+\pi r s
\end{aligned}
$$

Example 1: Calculate the surface area of a waffle cone (before it is filled with ice cream) with height 4.2 cm and radius 1.8 cm , * note = waffle cone has no "circular base"

$$
\begin{aligned}
S A & =\pi r s \\
& =\pi(1.8)(\sqrt{20.88}) \\
& =25.8397 \ldots \\
& =25.8
\end{aligned}
$$

$$
\therefore \text { the surface area is } 25.8 \mathrm{~cm}^{2} \text {. }
$$

$$
\begin{aligned}
& s^{2}=1.8^{2}+4.2^{2} \\
& s^{2}=20.88 \\
& s=\sqrt{20.88}, s>0
\end{aligned}
$$

Example 2: The slant height of a cone is tripled. Does this triple the surface area of the cone? Explain.

$$
S A_{\text {cone }}=\pi r^{2}+\pi r S_{\times 3}
$$

the lateral surface area will be tripled but the full surfere area will not be since the area of the base is not tripled.
Example 3: A cone is formed from a circle with a 90° sector removed. Another cone is formed from a semicircle with the same radius. How do the two cones differ?. How are they the same?

Both cones have the same slant height.

- taller with smaller circular base
shorter with
arger circular base
Example 4: The lateral area of a cone with slant height 14 cm is $132 \mathrm{~cm}^{2}$.
a) Find the radius of the cone, to the nearest cm .

$$
\begin{aligned}
\pi r S & =S A_{\text {lateral surface }} r=3.0012 \ldots \\
\pi r(14) & =132 \\
r & =\frac{132}{14 \pi}
\end{aligned} \quad r=3 \mathrm{~cm}, \quad . \quad .
$$

b) Find the height of the cone, to the nearest . tenth of a cm.

$h \sqrt{3} 14 \quad$| $h^{2}=14^{2}-3^{2}$ |
| :--- |
| $h^{2}=187$ |
| $h=\sqrt{187}, h>0$ |
| $h=13.67 \cdots$ |
| $h=13.7 \mathrm{~cm}$ |

Example 5: An old construction pylon needs to be painted. The base the pylon sits on is 20 cm by 20 cm by 1.5 cm , the radius of the cone is 8 cm and the height of the pylon is 31 cm . If only the part that shows is to be painted, find the surface area to be painted to the nearest hundredth.

$$
\begin{aligned}
S A & =\left(A_{4} \square \cdot A_{\square}-A_{0}\right)+\left(A_{\text {lateral surface }}\right) \\
& =4(20 \times 1.5)+20(20)-\pi(8)^{2}+\pi(8)(\sqrt{934.25}) \\
& =120+400-201.061+768.194 \\
& =1087.13
\end{aligned}
$$

$$
\therefore 1087.13 \mathrm{~cm}^{2} \text { needs to be painted. }
$$

* Assumption : cone comes to a point Lit isnota

