\qquad
Date: \qquad
Warm Up: Calculate the Volume and Surface area of a triangular prism. Given the base of the triangle is 19 cm , the height of the triangle is 24 cm and the height of the prism is $47 \mathrm{~cm} . \quad V=\frac{b h}{2} \times H$

$$
S A=\frac{6 h}{2} x^{2}+47(19)+2(47)(\sqrt{666.25})
$$

19 cm 47 cm Lesson 2: Volume and Surface Area of Cylinders
A cylinder is a three dimensional solid with identical parallel circular bases. The lateral surface is curved and extends from one base to the other base.

The volume of a cylinder is the same as a prism:
or

$$
\begin{aligned}
& V=A_{\text {base }} \times \text { height } \\
& V=\pi r^{2} h
\end{aligned}
$$

The net of a cylinder shows two circular bases and the lateral surface unfolds to reveal a simple rectangle. (So, the surface-area-of-glinderist.)

The height of the rectangle is the height of the prism, while the length of the rectangle is the circumference of the circular base. Therefore,

$$
\begin{aligned}
S . A_{\text {cylinder }} & =A_{2 \text { circles }}+A_{\text {rectangle }} \\
& =2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Example 1: Calculate the volume and surface area of the following cylinder. 725 mm convert to same units be fore substituting.
$V=\pi r^{2} h$
$V=\pi(25)^{2}(72)$
$V=141371.6694 \ldots$
$V=141371.7 \mathrm{~mm}^{3}$
(08) $141.4 \mathrm{~cm}^{3} \swarrow_{t_{0}}$ convert cubic
Units you must cube
the conversion number.
$10 \mathrm{~mm}=1 \mathrm{~cm} \Rightarrow 10^{3} \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}$

Example 2: A can of soup has a volume of $375 \mathrm{~mL} .=375 \mathrm{~cm}^{3}$
a) If the height of the can is 12 cm determine the radius of the can. (Note: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$)

$$
\begin{aligned}
& V=375, h=12 \\
& 375=\pi r^{2}(12) \\
& 12 \pi r^{2}=375
\end{aligned}, \quad \begin{aligned}
& r=? V=\pi r^{2} h \\
& r=\sqrt{9.94718} \ldots, r>0 \\
& r=3.15
\end{aligned}
$$

$$
r^{2}=\frac{375}{12 \pi}
$$

\therefore the radius is about 3.15 cm
b) How much paper is required to make the soup label?

$$
\begin{aligned}
S A & =2 \pi r h \\
& =2 \pi(3.15)(12) \\
& =237.5
\end{aligned}
$$

\therefore the paper required to make the label is $237.5 \mathrm{~cm}^{2}$ (ignoring need for overlap at seam).
Example 3: A roll of toilet paper has a height and diameter of 11.2 cm . If the inner cardboard roll is 4 cm in diameter, what is the volume of toliet paper on the roll?

$$
\begin{aligned}
V_{\text {paper }} & =V_{\text {large }}-V_{\text {small }} \\
& =\pi r_{1}^{2} h-\pi r_{2}^{2} h \\
& =\pi(5.6)^{2}(11.2)-\pi(2)^{2}(11.2) \\
& =962.684 .0 \\
& \doteq 962.7
\end{aligned}
$$

© the volume of paper on the roll is $962.7 \mathrm{~cm}^{3}$
Example 4: How much plastic would be required to package 12 toilet paper rolls from example 3, if they are arranged in a 2 by 3 by 2 orientation?

$$
\begin{aligned}
S A & =A_{\text {Top }} \times 2+P_{\text {Top }} \times h \\
& =\left(22.4^{2}+11.2^{2}+\pi(5.6)^{2}\right) \times 2+(11.2 \times 6+11.2 \pi) \times 22.4 \\
& =1451.44+2293.44
\end{aligned}
$$

$S A=3744.9 \mathrm{~cm}^{2}$ plus material for overlaps
(o) Approximate assuming square corners.

$$
\begin{aligned}
S A & =22.4^{2} \times 2+33.6 \times 22.4 \times 4 \\
& =4014.08 \mathrm{~cm}^{2}
\end{aligned}
$$

$A=22.4^{2}+$ top 11.2×11.2 $+\pi(5.6)^{2}$ $=725.72$ $P_{\text {to l }}=11.2 \times 6$ $+11.2 \pi$ $\therefore 102.3858^{\prime}$

