MPM 1DI Unit 5 Lesson 4
Determine the slope of the line
to the right using TWO different methods.
Using graph
$m=\frac{\text { rise }}{\text { run }}$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-4+2}{5-0}
\end{aligned} \quad=\frac{-2}{5}
$$

Using Algebra
$(0,-2) ;(5,-4) \leftarrow$ any two
$x_{1} y_{1} \quad x_{2} y_{2}$ from points

Unit 5: Linear Relations I (Chapter 5 in textbook)
Day 4 - Direct Variation
Ex. 1 The following table shows the relation between the distance and the time on a bike ride.

a) Draw the graph
b) Is the bike going at a constant speed?

Yes, the graph is linear so the
speed is constant.
c) What speed is the bike going?
\leftrightarrows rate of change so find the slope

* See table above $; \quad m=\frac{\Delta y}{\Delta x}$ $m^{m}=\frac{1}{5} \quad$ so speed \quad is $0.2 \mathrm{~km} / \mathrm{min}$.
d) What equation models this bike ride? $\quad \begin{aligned} m=\frac{1}{5} \\ m=0.2\end{aligned}$
$d=0.2 t$, where d is the distance in $k m$, t is the
e) How long will it take to ride 5 km ? time in minutes.
from graph about 25 minutes.
using algebra $d=5$, find $t \quad 0.2 t=5$

$$
\int \begin{aligned}
& t=25 \\
& \therefore 1+w 111
\end{aligned}
$$

Definition of DIRECT VARIATION:
A relationship between two variables in which one variable is a constant multiple of the other

The equation is in the form of
$y=m x$

* textbook often uses ' k ' as the where m is the constant multiple (or constant of variation)
constant The line goes through $\left\{\begin{array}{l}\text { the origin } \\ (0,0)\end{array}\right.$.

MFM ILI Unit b Lesson 4
Ex. 2: Paula works as a lifeguard. Her total earnings vary directly with the number of hours she works. She earned $\$ 120$ for 15 hours of work last week.
a) Find the equation that relates her wages (w) with the number of hours worked (h).

$$
\begin{aligned}
& w=m h \quad m=\frac{\Delta y}{\Delta x} \Gamma=\frac{120-0}{15-0} \\
& w=8 h \\
& w=8(22) \\
& \omega=176 \quad \therefore \text { sheearned } 4176 \text {. } \\
& \text { c) How many hours does Paula need to work to earn } \$ 76 \text { ? } \\
& \omega=71 \text {, find } h \text {. } \\
& 8 h=76 \\
& h=9.5 \\
& \therefore \text { she worked }
\end{aligned}
$$

b) How much does Paula earn for 22 h of work?

$$
h=22
$$

d) Graph the relation.

Ex. 3 The cost of bananas varies directly with the mass in kg. If bananas cost $\$ 1.25 / \mathrm{kg}$.
a) Make a table of values.

Mass (kg)	Cost (\$)
0	0
2	2.50
4	5.00
6	7.50
8	10.00

c) Write an equation in the form of $y=m x$

$$
y=1.25 x
$$

b) Graph the Relation

d) Use the graph to estimate how many gs of bananas could be bought for $\$ 5.75$. MASS (kg)
About $4 \frac{2}{3} \mathrm{~kg}$ of bananas can be purchased for $\$ 5.75$
e) Use the equation to calculate how many gs of bananas could be bought for $\$ 5.75$.

Summarizing Direct Variation: bananas can be carchased.

