Unit 5 Lesson 3
Warm Up:
Determine the slope of the line given in the graph to the right.

* pick any two 'nice' pants on the line ('nice' points are points with integer values for the $x \xi y$ coordinates.)
* count the 'rise' and
'run' to get from one point to the next

$$
\begin{aligned}
& m=\frac{\text { rise }}{\text { run }} \\
& =-\frac{3}{1} 2 \text { simp by diff ing to ter mim. } \\
& \text { 3-Slope as a Rate of Change (5.4) }
\end{aligned}
$$

$$
\text { Recap: Slope formula }-m=\frac{\text { rise }}{\text { run }}
$$

$$
\begin{align*}
m & =\frac{\text { change in } y^{\prime} s}{\text { change in } x^{\prime} s} \tag{o}\\
& =\frac{\Delta y}{\Delta x} \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{align*}
$$

Ex. 1 Sue drove 325 km in 3.5 hours.
What is the rate of change of distance from Sue's starting point?
recall: rates always have two units For example, $10 \mathrm{~km} / \mathrm{h}, \$ 2 / \mathrm{scoop},-1.3$ litres $/ \mathrm{h}$ are all examples of rates of change. In fact, they are all "unit rates".
The'rate of change' in this example means, "How is distance changing over time?"

$$
\begin{aligned}
\text { rate of change } & =\frac{\text { change in distance }}{\text { change in time }} \\
& =\frac{325 \mathrm{~km}}{3.5 \mathrm{~h}} \text { \&rate is a } \\
& \doteq 92.9 \mathrm{~km} / \mathrm{h} \text { a simplify to } \\
& \text { unit rate }
\end{aligned}
$$

"y's rhymes with rise"
" Δ " is greek letter 'delta', means' the change in'
subscripts are used to number the points e.g, given $\left(x_{1}, y_{1}\right)$, x, means the x-value from the first point
Ex. 2 A 5 year old sleeps an average of 11 hours a night, whereas a 25 year old sleeps an average of 8 hours a night. What is the rate of change of sleep?
means "How do total hours of sleep change, as an individual gets older".

$$
\begin{aligned}
& \text { rate of change }=\frac{\text { change in hour }}{\text { change in age }} \\
& \left.\begin{array}{l}
\therefore \text { on } \\
\text { average, } \\
\text { a person's }
\end{array}\right\}=\frac{8 \text { hours }-11 \text { hours }}{25 \text { years }-5 \text { years }} \\
& \text { nightly sleep is } \\
& \begin{array}{l}
9 \text { minutes } \\
\text { less each }
\end{array} \\
& \text { year. } \\
& \begin{array}{l}
=\frac{-3 \text { hours }}{20 \text { years }} \\
=\frac{-180 \text { minutes }}{20 \text { years }} \\
=-9 \text { minutes } / 4 \text { eur }
\end{array}
\end{aligned}
$$

Unit 5 lesson 3 page 2
Ex. 3 The graph shows the relationship between the height of a parachutist, in metres, and the time of descent, in seconds.

Time (s)
a) Calculate the slope. (watch the scale)

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{-50}{10} \\
& =-5
\end{aligned}
$$

b) Interpret the slope as a rate of change.

'y'units 'x' units

The parachutist is falling 5 metres every second.

Ex. 4 Christina pays her internet bill based on hours of use. For one month, Christina was on-line for 15 hours and was billed for $\$ 23.75$. The next month, she was on for 27 hours and her bill was $\$ 38.75$. Assume this is a linear relationship. Determine the rate of change and interpret its meaning in the context of the question. Recall: Rate of change $=$ slope of the line! Given two 'ordered pairs' ($15,23.75$), (27, 38.75)

Method 1:

a) Graph the cost per hour

b) Determine the slope of the line.
$m=\frac{\text { rise }}{\text { run }} \quad \Delta=\frac{5}{4}$
$=\frac{\text { rise }}{\text { run }}$
$=\frac{25}{20}$$\quad \begin{aligned} & =\frac{5}{4} \\ & \text { is } \$ 1.25 / \text { hour. }\end{aligned} \quad \begin{aligned} & \text { Christina pays } 1.25 \text { for every } \\ & \text { hour she uses the internet. }\end{aligned}$

Exit Cards

It cost a video game company $\$ 1575$ to produce 125 copies of their top selling video game in November. In December they produced 300 copies and it cost the company $\$ 3500$. Assuming this is a linear relationship, determine the company's cost of producing one copy of the game. * rate of change will

$$
\left.\begin{array}{cc}
(125,1575) & (300,3500) \\
x_{1} & y_{1}
\end{array} x_{2} y_{2}\right)
$$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3500-1575}{300-125} \\
& =\frac{1925}{175} \\
& =11 \quad \therefore \text { The cost is } \$ 11 / \text { copy }
\end{aligned}
$$

