Day	Date	Lesson	Assigned Work	Done (V)
1	Fri May 12	Review: Units 1, 2 \& 4 (Chapters 2-3)	Pages 98 \#1-4, 7-8 (ch. 2) Pages 178-179 \# 5, 11-19, 21 - 23 (sh 2, 3)	
3	Tues May 16	Review: Units 3 \& 5 (Chapter 4 and 5)	Page 356 \# 1-6 (ch. 4) Page 232\#1-6 (ch. 4) Pages 356-357 \# 7-11 (ch. 5) Pages 290-291 \#1-10 (ch. 5)	
1	Thurs May 18	Review: Unit 6 (Chapter 6)	Page 357 \# 13-18 (ch. 6) Page 355 \# 6, 9, 12 (ch. 6)	
3	Mon May 22 (Victoria Day) Tues May 23	Review: Unit 7, 8 \& 9 (Chapters 7,8 and 9)	Pages 520-521 \# 1, 2, 4, 7 (ch. 7) Pages 410 \#1-7, 9, 10 (ch. 7) Page 520 \# 8-15, 16c (ch. 8, 9) Pages 472-473 \# 1-12 (ch. 8) Pages 518-519 \#1-9 (ch. 9)	
1	Thurs May 25	EQAO Sample Practice Questions	Handout	
3	Mon May 29	EQAO PREP PRACTICE TEST (2016)	Finish the questions that were not completed during class	
1	Wed May 31	EQAO PREP PRACTICE TEST (2015)	Finish the questions that were not completed during class	
3	Fri June 2	Take up any questions	Do more prep from EQ,AO web-site... get good sleep and have a healthy breakfiast and lunch before testing next two classes.	
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	Tues June 6 Thurs June 8	EQAO TESTING DURING YOUR MATH CLASS	Attendance is mandatory. If you have a conflict, please see your teacher to make other arrangements A.S.A.P.	
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	Mon June 12 Wed. June 14	Exam Review	RETURN YOUR TEXTBOOK by June 8 homework practice questions are on google classroom. Extra practice questions ure available on Mrs. Behnke's web-:site.	
	Tues. June 20	$\begin{gathered} \text { EXAM } \\ 8: 30-10: 00 \mathrm{am} \end{gathered}$		
	Wed. June 28	Exam Review Day	Come in to review your marked esian if you'd like. Have a great summer :	

**Note: For extra EQAO practice activities please check out EQAO's website under studerit resources: http://www.egoo.com/en/assessments/grade-9-math/Pages/example-assessment-materings-2 216 aspx (Go to www.eqao.com \rightarrow Select "Student" \rightarrow Select "Grade 9 Math" \rightarrow Select "Examples of Assiessinents and Scoring Materials" \rightarrow Select "Student Assessment Booklets and Scoring Guides")

Summative Assessment Review Day 1 (Units 1, 2 and 4 - Chapters 2 \& 3)

© Integers (Review work with integers!)
(0) Rational Number Operations
(0) Convert mixed numbers to improper fractions
(0) To add or subtract find a common denominator then add or subtract the numerators, keep the denominator the same
(0) To multiply reduce if possible then multiply straight across on both the numerator and the denominator
(0) To divide multiply by the reciprocals.

Example 1. Simplify:
a) $\frac{-3}{5}+\left(\frac{-3}{4}\right)-\frac{7}{10}$
b) $\left(\frac{2}{3}-\frac{1}{3}\right) \div\left(\frac{-3}{4}-\frac{-2}{3}\right)$
$=\frac{3 \times 4}{5 \times 4}-\frac{3 \times 5}{4 \times 5}-\frac{7 \times 2}{10 \times 2}$
$\begin{aligned} & =\frac{1}{3} \div\left(-\frac{3 \times 3}{4 \times 3}+\frac{2 \times 4}{3 \times 4}\right) \\ & =\frac{1}{3} \div\left(\frac{-9+8}{12}\right) \\ & =\end{aligned} \quad \frac{1}{3} \div\left(\frac{-1}{12}\right) \quad \begin{aligned} & =\frac{1}{3} \times \frac{-12}{1} \\ & =-4\end{aligned}$

$$
=\frac{-41}{20}
$$

(2) Exponent Laws (text 3.2,3.3)
Ninvert $\left(-\frac{1}{12}\right)$ and multiply
(0) $a^{m} \times a^{n}=a^{m+n}$ To multiply powers with the same base, keep the base the same and add the exponents.
Example 2. a) $4^{5} \cdot 4^{3}$
b) $3^{2} \cdot 3^{5}$
$=4^{5+3}$
$=3^{2+5}$ $=4^{8}=65536$
$=3^{7}=2187$
(0) $\frac{a^{m}}{a^{n}}=a^{m-n}$ To divide powers with the same base, keep the base the same and subtract the exponents.
Example 3.
b) $4^{5 x} \div 4^{3 x}$
$=4^{6-3}$
$=4^{5 x-3 x}$
$=4^{3}=64$
$=4^{2 x}$
(0) $\left(a^{m}\right)^{n}=a^{m \times n}$ Power of a power: Keep the base the same and multiply the exponents.

Example 4. $\begin{aligned} &\left(2^{5}\right)^{3} \\ &=2^{5 \times 3}\end{aligned} \quad \begin{aligned} & =2^{15} \\ & =32768\end{aligned}$
Example 5. Simplify:
a) $\frac{\left(m^{5}\right)\left(m^{3}\right)}{m^{2}}$
b) $x^{12} \div\left(x^{2}\right)^{5}$
$=\frac{m^{8}}{m^{2}}$
$=x^{12} \div x^{10}$
$=m^{6}$
$=x^{2}$

Algebra (text 3.4-3.7)
(0) Adding and Subtracting Polynomials

- Can only add/subtract like terms (same variable with the same exponents)

Example 6. $3 x^{2}, 4 x^{2},-2 x^{2}$
(LIKE terms) $3 \mathrm{x}, 3 \mathrm{x}^{2},-3 \mathrm{x}^{3}$ (LINLIKE terms.)

- Distributive Property

$$
a(b+c)=a b+a c
$$

Example 7. Expand and Simplify:
a) $2(3 x+5)$
b) $1 / 2(6 x+8)-(2 x-3)$
c) $3 x\left(2 x^{2}-4 x\right)$
$=6 x+10$

$$
\begin{aligned}
& =3 x+4-2 x+3 \\
& =x+7
\end{aligned}
$$

$$
=6 x^{3}-12 x^{2}
$$

(3) Also review chapter 2

Hypotheses, Sources of Data and Sampling Principles

Primary Data: oriainal data that a researcher gathers for an experiment. Secondary Data: Data that Someone else has already gathered for another purpose (usually from publications like the internet or surveys).
Population: The entire group of people or items being studied.
Census: A survey of all members of a population.
Sample: Any group of people or items selected from a population.
Random Sample: A sample in which all mombers of a population have an equal chance of being chosen.
Simple Random Sample: Choosing a specific, number of members randomly from the entire population.
Systematic Random Sampling: Choosing members of a population at fived intervals from a population.
Stratified Random sampling: Dividing a population into distinct groups and then choosing a pronirtionate number randomly from each group.
Bias: Error resulting from choosing a sample that does not represent the entire population

Do:
Pages 98\#1-4, 7-8 (ch. 2)
Pages 178-179 \# 5, 11-19, 21-23 (ch 2. 3)
Redo old tests from units 1 and 2 and 4

1. Evaluate.

a. $(-3)(8)$
b. $\frac{-30}{-6}$
c. $(-2) \times(-2) \times(-2)$
$=-24$

$$
=5
$$

$=-8$
d. $(+3)+(-9)$
e. $\frac{(6)(-15)^{3}}{-51}=18$
f. $5+(-3)+7$
$=3-9$
$=-6$
$=5-3+7$
$=12-3=9$

$$
\text { g. } \begin{aligned}
& (+8)+(+3)-(-6)+(-3) \\
= & 8+3+6-3 \\
= & 17-3=14
\end{aligned}
$$

h. $(-5+3)-(8-12)$
i. $(+3)-(-2)(-5)$
$=-2-(-4)$
$=-2+4=2$
$=3-(10)$
j. $(-12) \div(-2)+(-5)(+4)$
$=6+(-20)$
$=6-20$
$=-14$
k. $\frac{2(-5+3)-2(5-1)}{-7+4}$
$=3-10=-7$
I. $4[-6(-2-7)-5(7+2)]$
$=4[-6(-9)-5(9)]$
$=4(54-45)$
$=4(9)=36$
$=\frac{2(-2)-2(4)}{-3}$
2. Use your knowledge of BEDMAS, fractions and integers to evaluate each expression. Write your answers in lowest terms.
a. $\begin{aligned} \frac{5}{9}-\frac{2}{9} & =\frac{3}{9} \\ & =\frac{1}{3}\end{aligned}$
b. $\frac{4}{5}+\frac{7}{15}=\frac{12+7}{15}$
c. $3 \frac{1}{4}+2 \frac{2}{3}=3+2+\frac{3}{12}+\frac{8}{12}$

$$
=\frac{1}{3}
$$

c. $\begin{aligned} 3 \frac{1}{4}+2 \frac{2}{3} & =3+2+\frac{3}{12}+\frac{8}{12} \\ & =5+\frac{11}{12}=5 \frac{11}{12}\end{aligned}$
d. $-\frac{3}{4}-\left(\frac{-2}{5}\right)=-\frac{3}{4}+\frac{2}{5}$
e. $\left(\frac{50}{-9}\right) \times\left(\frac{-27}{25}\right)^{3}=\frac{6}{1}$
f. $\left(\frac{5}{8}\right) \div\left(-\frac{3}{2}\right)$
$=\frac{5}{8} \times\left(\frac{-2}{3}\right)=\frac{-5}{12}$
4. $\left(-\frac{1}{5} \times \frac{2}{8}\right)+\frac{5}{6} \div\left(-\frac{5}{3}\right)$
OR $\frac{71}{12}$
g. $\frac{7}{8}+\left(-\frac{1}{4}\right) \times 5=\frac{20}{20}$
h. $\frac{-3}{5} \div\left(\frac{-5}{+12}\right) \div\left(\frac{-9}{10}\right)$
f. $\left(\frac{5}{8}\right) \div\left(-\frac{3}{2}\right)$
$=\frac{5}{8} \times\left(-\frac{2}{3}\right)=\frac{-5}{12}$
i. $\left(-\frac{3}{5} \times \frac{2}{1}\right)+\frac{5}{6} \div\left(-\frac{5}{3}\right)$
$=\frac{7}{8}-\frac{5}{4}=\frac{7-10}{8}=-\frac{3}{8}$
SOLUTIONS:
$=\frac{19}{15}$
$\begin{aligned}\left(\frac{-27}{25}\right)^{3} & =\frac{6}{1} \\ & =6\end{aligned}$
$=+\frac{\beta}{5}$
$=\frac{8}{5}$

$$
=-\frac{2}{5}+\frac{5}{6} \times-\frac{5}{51}
$$

1. a. $\mathbf{- 2 4}$
b. 5
c. -8
d. -6
e. 3×18
f. 9
g. 14
h. 2
i. -7
j. -14
k. 4
I. 36
a. $\frac{1}{3}$
b. $\frac{19}{15}$ or $1 \frac{4}{15}$
c. $5 \frac{11}{12}$ or $\frac{71}{12}$
d. $-\frac{7}{20}$
e. 6
f. $-\frac{5}{12}$
g. $-\frac{3}{8}$
h. $1 \frac{3}{5}$ or $\frac{8}{5}$
$1-\frac{9}{10}$
2.

Relations (Chapter 2) continued

- Graphing a table of data to create scatter plots
- Line vs. Curve of best fit
- Linear vs. Non-linear relations linear \rightarrow line of best fit non-linear \rightarrow data does intwerninterpolation vs. Extrapolation using line/curve of best fit to make a not fal/in a Ex. 1: Determine the sampling method used in each situation.
a) One thousand participants in a clinical trial were divided into groups based on their ages (ie. $20-24,25-29$, etc.). Then from these age groups, 20% of the participants were selected randomly to create a sample of 200 individuals. Stratified.
b) A random number generator was used to select an individual on a numbered list. From there, every $15^{\text {th }}$ individual on the list was also chosen to be part of the sample. Systematic
Ex 2: Jeff's movements after he left his house are shown on this distance-time graph. Describe
his movements (starting and stopping points and speed changes).

Jeff walks away from home for 5 s at $2 \mathrm{~m} / \mathrm{s}$
then turns around and walks back to ward home at $\frac{8}{3} \mathrm{~m} / \mathrm{s}$ for 3 s . He stops for 5 s then walks away from nome at $5 \mathrm{~m} / \mathrm{s}$ for 2 s then turns around and sprints toward home for 3 s . gradually slowing to a stop a little over 7 m from home.

Independent Variable:

variable that affects another variable.
Always plotted on the x-axis.

Dependent Variable :

variable that is affected by some other variable
(i.e. its value depends on another).

It is always plotted on the y-axis.

Ex. 3: The number of hours per week a person spends training to run 100 m and the time it took this person to run the 100 m are recorded in the table below.

a) Identify the independent variable. \qquad training
b) Graph the data.
c) Draw a line or curve of best fit.
d) Predict the time it would take for a person who trains 12 hours per week to run 100 m - l sthis an example of interpolation or extrapolation?

$$
\text { about } 14 \text { hours }
$$

e) If a person ran the 100 m in 12 seconds flat, about how many hours a week would they train? Is this an example of interpolation or extrapolation?
(). Unit 3 - Equations (chapter 4 in text)

- Ratios, rates and percent
- Set up equations from word problems
- Solve equations (including equations with fractions)
- Rearrange equations

Example 1: Solve.
a) $3: 5=80: x$
b) $\frac{4}{x} \geqslant \frac{14}{35}$
$14 x=140$
$x=10$
c) 18% of $\$ 90$
0.18×90
$=16.20$

$$
\begin{aligned}
& \frac{18}{100}=\frac{x}{90} \\
& x=\frac{18}{100} \times 90 \\
& x=16.20
\end{aligned}
$$

$\frac{3}{80}=\frac{5}{x}$
cross multiply
$3 x=80(5)$
$3 x=400$$\quad \frac{400}{3}$
d) In one gallon of paint, there are 3 red parts to 20 yellow parts. If a 5 gallon pail of paint is mixed, how many parts of each colour would need to be added to create the same colour tone?
red parts $3 \times 5=15$ parts yellow parts $20 \times 5=100$ parts
e) The ratio of teachers to students in a school is 2 to 45 . How many teachers are in the school if there is a total of 1410 students and teachers altogether in the school?
teachers $=\frac{2}{45+2}$
Example 2: Solve
$t=\frac{2 \times 1410}{47}>t=60$
b) $\quad \begin{aligned} \frac{x}{6}+4 & =3 \\ -4 & -4\end{aligned}$

$$
\frac{x}{6}=-1
$$

$$
\frac{x}{6} \times 6=-1 \times 6
$$

$$
x=-6
$$

\therefore thereare 60
teachers.
c) $3(2 x-4)=9 x+3$
$6 x-12=9 x+3$
$-9 x \quad-9 x$
$-3 x-12=3$
$+12+12$
$-3 x=15$
d) $\frac{x+2}{2} \times \frac{x-1}{5}$
cross multiply
$5(x+2)=2(x-1)$
$5 x+10=2 x-2$
$-2 x \quad-2 x$
$3 x+10=-2$

$$
-10 \quad-10
$$

$$
3 x=-12
$$

$$
\frac{3 x}{3}=-\frac{12}{3}
$$

$$
x=-4
$$

e) $\frac{3 k}{2}-\frac{k+3}{3}=\frac{8}{1}-\frac{k+2}{4} \quad$ LCD 12

$$
\frac{12}{2}(3 k)-\frac{12}{3}(k+3)=\frac{12}{1}(8)-\frac{12}{4}(k+2)
$$

$$
6(3 k)-4(k+3)=12(8)-3(k+2)
$$

$$
18 k-4 k-12=96-3 k-6
$$

$$
14 k-12=-3 k+90
$$

$$
+3 k \quad+3 k
$$

$$
17 k-12=90
$$

$$
+12+12
$$

$$
17 k=102
$$

$$
\frac{17 k}{17}=\frac{102}{17}
$$

Example 3: (Rearranging equations)

The formula for the perimeter of a rectangle is $P=2 L+2 W$, where L is the length and W is the width of the rectangle. Which is the formula for the length?
L
w \square
c. $\frac{P-2 W}{2}=L$
$P-2 W=2 L$
a. $\quad \frac{2 P-2 W}{2}=L$
b. $\quad \frac{P-W}{2}=L$
d. $\quad \frac{2 P-W}{2}=L$

$$
\frac{P-2 W}{2}=\frac{2 L}{2}
$$

Modelling with Graphs (chapter 5 in text)

$>$ Direct/Partial Variation (bothare linear)
(0) Direct Variation: $\mathbf{y}=\mathbf{m x}$ initial value is $\mathbf{0}$

Partial Variation: $y=m x+b$ initial value is NOT 0

$>$ First Difference Tables

$>$ Slope ;-) constant of variation
(-) rate of change or unit rate
(). $m=\frac{r i s e}{r u n}$
(3) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(-) $m=\frac{\Delta y}{\Delta x}$

Example 4: Identify each of the following as direct variation, partial variation or neither.

Partial
Variation

neither (not linear)

direct variation

Partial
Variation

Example 5:

The table is for a linear relation. Unfortunately, one error was made in copying the table. Find the error and copy the table with the correction.

x	x	Δy
-3	2	-5
-3	-1	-2
-3	-4	(0)
-3	-7	4
-10	7	

x	\boldsymbol{r}
2	-5
-1	-2
-4	1
-7	4
-10	7

Example 6:

Examine the set of line segments.
a) Name the line segment that has the steepest negative slope. Express the slope in decimal form.

$$
m_{E F}=\frac{-5}{2}
$$

b) What is the slope of:
CD?
$m_{C_{\square}}=\frac{1}{2}$
$m_{I J}^{\text {Is? }}$ is undefined
GH?

$$
m_{G H}=0
$$

Example 7:

What is the slope of the line segment joining the points $P(0,7)$ and $B(-2,-4)$?

Example 8:

The Pronghorn antelope is the fastest North American mammal. It can run 200 m in about 7.5 s . What is the average speed of this antelope? (speed is a rate of change - this is a slope and slope as a rate of change is the same as a unit rate.)

$$
\begin{aligned}
\text { averagespeed } & =\frac{200 \mathrm{~m}}{7.5 \mathrm{~s}} \\
& \cong 26.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The average speed of the antelope is about $26.7 \mathrm{~m} / \mathrm{s}$.

Example 9:

The distance-time graph shows Tracy's motion in front of a motion sensor.

Do:
Page 356 \# 1-6 (ch. 4),
Page 232 \# 1-6 (ch. 4)
Pages 356-357 \# 7-11 (ch. 5)
Pages 290-291 \# 1-10 (ch. 5)
Re-do Unit 3 and 5 tests.

Summative Assessment Review Day 3 (Unit 6-Chapter 6)

Analyzing Linear Relations (chapter 6 in text)

$>$ Equations of Lines in slope/y-intercept form
$y=m x+b$, where m is the slope, b is the y-intercept (where the graph crosses the y-axis - the point where x is 0)
$>$ Equations of Lines in standard form
$A x+B y+C=0$, leading coefficient must be positive, no fractions, no decimals, $=0$ on the right side, in order
$>$ Horizontal/Vertical Lines
$>$ Graphing using intercepts
$>$ Parallel Lines (parallel lines have the same slope)
> Perpendicular Lines (slopes are negative reciprocals)
$>$ Finding Equation of Line given a point and slope
$>$ Finding Equation of Line given two points
$>$ Linear Systems (Finding point of intersection of two lines)
Example 1: Graph the line $y=-3 x-2$ using the slope and y -intercept.

Example 2: Write the equation $2 x-4 y=10$ in slope/ y intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form)

$$
\begin{aligned}
2 x-4 y & =10 \\
-4 y & =-2 x \\
-\frac{4 y}{4} & =-\frac{2}{4} x+\frac{10}{-4} \\
y & =\frac{1}{2} x-\frac{5}{2}
\end{aligned}
$$

Example 3: Write $y=-3 x+2$ in standard form

$$
\begin{aligned}
& -y-y \\
& -3 x-y+2=0
\end{aligned}>3 x+y-2=0
$$

Example 4: The equations of four lines are given:

$$
y=2 x-4 \quad y=5 \quad y=-x+3 \quad x=-3
$$

Which of these represents
(a) a vertical line? cuts through x-axis(b) a horizontal line? cuts through y-axis, $m=0$

$$
x=-3 \quad y=5
$$

(c) a line that slopes upward to the right?
$m>0 \quad y=2 x-4$
(d) a line that slopes downward to the right?
$m<0$

$$
y=-x+3
$$

Example 5: Graph $2 x-4 y=10$ using intercepts. To find the x-intercept, set $y=0$
To find the y-intercept, set $x=0$ (May use "thumbBe sure to extend the line to fill your grid and label the line. Ensure that you have included a scale, you've labeled the axes and included arrows on the line and on the axes.

$$
\begin{array}{cc}
\frac{x-i n t}{2 x=10} & \frac{y \text { int }}{} \\
x=5 & -4 y=10 \\
(5,0) & y=-\frac{5}{2} \\
& (0,-2.5)
\end{array}
$$

Example 6: What is the equation of a line...
(a) With y-intercept 3 and perpendicular to a line with slope $\frac{1}{2} \cdot m_{\perp}=-2 \quad b=3$

$$
y=-2 x+3
$$

(b) Parallel to the line $x=2$ and passing through the point $(5,7)$
\rightarrow same form
(undefined slope, vertical inc) $\quad x=5$.
(c) through $\begin{gathered}(-4,-1) \text { with slope } \frac{1}{2} \text {. } \\ x y \\ m\end{gathered}$

$$
\begin{aligned}
y & =m x+b \\
-1 & =\frac{1}{2}(-4)+b \\
-1 & =-2+b \\
1 & =b
\end{aligned}
$$

(d) With an x-intercept of 6 and a y-intercept of 4

To write the equation of a line we need the slope and the y-intercept. We need to use the two points $(6,0)$ and $(0,4)$ to find the slope.

(e) Through the points $(-1,7)$ and $(-5,3) \quad(-5,3)(-1,7)$

To write the equation of a line we need the slope and the y-intercept. We need to use the two points to find the slope.

$$
\begin{array}{rlrl}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & y=m x+b \\
& =\frac{7-3}{-1+5} & & 7=1(-1)+b \\
& =\frac{4}{4} & \therefore y=b \\
& =1
\end{array}
$$

Example 7: Find the point of intersection of the two lines by graphing. Check your answer. Be

$$
\begin{aligned}
& \text { sure to label your axes and use good graphing form } \\
& \qquad \begin{array}{llr}
y=-3 x+1 \\
y=x+5
\end{array}
\end{aligned} \begin{array}{ll}
m=\frac{-3}{1} \quad b=1 & \text { (1) } \begin{array}{l}
m=\frac{1}{1} \quad b=5 \\
m=\frac{-1}{-1}
\end{array}
\end{array}
$$

Check in: $y=-3 x+1$
Check in: $y=x+5$

$$
\therefore(x, y)=(-1,4)
$$

Do:
Page 357 \# 13-18 (ch. 6)
Page 355 \# 6, 9, 12 (ch. 6)
Redo old Unit 6 Test.
\rangle From grade 8 ... you must remember
\checkmark How to classify triangles using side lengths
\checkmark How to classify triangles using angle measures
\checkmark When two lines intersect, the opposite angles are equal
\checkmark The sum of the angles of a triangle is 180°
\checkmark When a transversal crosses parallel lines,

- Alternate angles are equal (Z pattern)
- Corresponding angles are equal (F pattern)
- Co-interior angles have a sum of 180° (C pattern)
\geqslant Grade 8 review is on pages 362-363 of textbook.
$>$ Terminology (all definitions are in text chapter seven - look for green highlighted words): Vertex, interior angle, exterior angle, ray, equiangular, adjacent, supplementary, complementary, transversal, congruent, convex polygon, concave polygon, pentagon, hexagon, heptagon, octagon, regular polygon, midpoint, median (the line segment joining a vertex of a triangle to the midpoint of the opposite side), bisect, right bisector, centroid (the point where the medians of a triangle intersect), similar
\geqslant The sum of the exterior angles of a convex polygon is \qquad ${ }^{\circ}$.
\checkmark RECALL: Convex polygon - all interior angles measure less than 180° See red box on page 370 for diagram of triangle, red box on page 380 for diagram of quadrilateral!, 7.3 for convex polygons in general.
> The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices. (E.A.T.) See red box on page 370 for diagram.
$\%$ The sum of the interior angles of a quadrilateral is 360°
$>$ For a polygon with n sides, the sum of the interior angles, in degrees, is $\mathrm{S}=$
> A line segment joining the midpoints of two sides of a triangle is parallel_ to the third side and half as long.
F The height of a triangle formed by joining the midpoints of two sides of a triangle is half the height of the original triangle.
\Rightarrow The medians of a triangle bisect its \qquad area .
$>$ Joining the midpoints of the sides of any quadrilateral produces a parallelogram
\Rightarrow The diagonals of a parallelogram bisect each other.
\% The diagonals of a square are equal and they bisect each other at right angles.
> The diagonals of a rectangle bisect each other.
\% The diagonals of a kite meet at right angles.
\geqslant The diagonals of a rhombus bisect each other at right angles.

Example 1: In the diagram, $a+b+c=$

a. 180°
c. $\quad 540^{\circ}$
b. 360°
d. None of these.

Example 2:

Find the measure of the exterior angle, x.

Example 3: Find the measure

 of the exterior angle, a.$$
\begin{aligned}
& x=47^{\circ}+82^{\circ} \\
& x=129^{\circ} \quad(E A T)
\end{aligned}
$$

of the exterior angle, a^{2}

$$
a=360^{\circ}-93^{\circ}-80^{\circ}-130^{\circ}
$$

$$
a=57^{\circ}
$$

$$
(P E A S T)
$$

Example 4: A regular polygon has exterior angles equal to 30°. How many sides does the polygon have?

$$
\begin{aligned}
30 n & =360 \\
n & =12
\end{aligned} \quad \therefore \text { the polygon has } 12 \text { sides. }
$$

Example 5: A regular polygon has interior angles equal to 140°. How many sides does the polygon have? exterior angles measure 40° (Supp) or (SA)

$$
\begin{aligned}
40 n & =360 \\
n & =9
\end{aligned} \quad \begin{array}{r}
\text { (OR) } \begin{array}{r}
180^{\circ}(n-2)=140^{\circ} n \\
180^{\circ} n-140^{\circ} n=360^{\circ} \\
40^{\circ} n=360^{\circ}
\end{array} \\
\therefore \text { the polygon has } 9 \text { sides. }
\end{array}
$$

Example 6:

$$
\begin{aligned}
180^{\circ}(6-2) & =6 x \\
\frac{180(4)}{6} & =x \\
x & =120^{\circ}
\end{aligned}
$$

Calculate the value of angle x and angle y, given that the hexagon is regular.

$$
\begin{aligned}
& y=360^{\circ}-120^{\circ}-90^{\circ} \text { assume rectangle } \\
& y=150^{\circ}
\end{aligned}
$$

() Measurement Relationships (chapter 8 in text)
$>$ Be able to use given formulas to find the area and perimeter of 2-D figures and the surface area, volume of 3-D figures.
$>$ Be able to use the Pythagorean theorem as it relates to slant height, height, and radius in a cone $s^{2}=h^{2}+r^{2}$ and a pyramid $s^{2}=h^{2}+\left(\frac{1}{2} b\right)^{2}$.
$>$ The volume of a prism is 3 times the area of a pyramid with the same dimensions.
$>$ The volume of a cylinder is 3 times the area of a cone with the same dimensions.
Example 7: The volume of a cylinder is $300 \mathrm{~cm}^{3}$. What is the volume of a cone with the same dimensions as the cylinder?

$$
\begin{aligned}
V_{\text {cone }} & =\frac{1}{3} V_{\text {cylinder }} \\
& =\frac{1}{3}(300) \\
& =100 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 8 A cone has a radius 7 cm and a height of 18 cm . What is its slant height?

Example 9: A sphere has a diameter 12 cm . What is its volume, to the nearest cubic centimeter? $\quad r=6 \mathrm{~cm}$

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V=4 \pi(6)^{3} \div 3 \\
& V=288 \pi \\
& V=904.77868 \ldots \\
& V=905 \mathrm{~cm}
\end{aligned}
$$

(). Optimizing Measurements (chapter 9 in text)
y 2 D - Optimizing - determining dimensions that will maximize the area or minimize the perimeter

- 4-sided rectangle - a SQUARE optimizes the area and perimeter
- To determine dimensions,

Given Perimeter: \quad Given Area: $W=\sqrt{A}$

$$
\begin{aligned}
w & =\frac{p}{4} \\
A & =w^{2}
\end{aligned}
$$

$$
P=4 W .
$$

- 3-sided rectangle (one side does not need fencing) - area and perimeter are optimized when $1=2 w$
- To determine dimensions, Given Perimeter:

$$
\begin{aligned}
& w=\frac{P}{4} \\
& l=2 w
\end{aligned}
$$

Given Area:
divide into 2 squares then take $\sqrt{ }$ to find w

$$
\begin{aligned}
& w=\sqrt{(A \div 2)} \\
& l=2 w
\end{aligned}
$$

> 3D -Optimizing - determining dimensions that will maximize the volume or minimize the surface area The optimal is a sphere in 3-D so closest to a sphere optimizes.

- Square-based Prism -a \qquad optimizes the volume and surface area
- To determine dimensions,

Given Volume: $V=x^{3}$

$$
\text { So, } x=\sqrt[3]{V}
$$

Given Surface Area: $A_{\text {TOTAL }}=A_{6 \text { squares }}$
$A=6 x^{2}$
substitute in A, Solve for x.

- Cylinder - the volume and surface area are both optimized when $h=2 r$
- To determine dimensions,

Given Volume:

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi r^{2}(2 r) \\
& V=2 \pi r^{3} \\
& V \text { replace } 2 r \\
& \text { substitute in } V \text {, solve for } \\
& r \text {... get } \\
& r=\sqrt[3]{\frac{V}{2 \pi}}
\end{aligned}
$$

Do:
Pages 520-521 \# 1, 2, 4, 7 (ch. 7)
Pages 410 \#1-7,9,10 (ch. 7)

Pages 472-473 \#1-12 (ch. 8)
Pages 518-519 \#1-9 (ch. 9)
Redo old Unit 7, 8 \& 9 Tests.

Given Surface Area:

$$
\begin{gathered}
A=2 \pi r^{2}+2 \pi r h<\text { replace } \\
A=2 \pi r^{2}+2 \pi r(2 r) \text { hwithzr } \\
A=6 \pi r^{2} \\
\text { substitute in } A \text {, solvefor } r . \\
\cdots \text { get } \\
\quad r=\sqrt{\frac{A}{6 \pi}}
\end{gathered}
$$

