Warm Up:

Given R = 50p, determine:

- a) constant of variation
- b) fixed value
- c) slope of the line

If R represents the money raised at a fundraising event, and p represents the number of people, determine how many people came if \$6500 was raised.

Unit 5: Linear Relations I Day 6 - Connecting and Applying

So far, we have learned how to identify a linear relation from a(n):

- 1.
- 2.
- 3.

AND

- we can tell if a linear relation is direct or partial by the graph or by the form of the equation
- we can calculate slope of a line

Now, let's tie it all together!!!

<u>Ex. 1</u> The following table shows the height above the ground of a snail as it crawls up a pipe.

a) Graph this relation. Is it partial or direct variation?

- (mins) (cm)
 0 -3
 3 1
 6 5
 9 9
 12 13
- b) Use first differences to confirm that the relation is linear.
- c) Calculate the slope.

- d) What is the initial height of the snail?
- e) Write the equation of the line.

MPM1DI Unit 5 Lesson 6

Ex. 2 y varies partially with x. When x = 0, y = 3 and when x = 6, y = 8.

a) Find the slope and the vertical intercept (y intercept) of the line.

b) Graph the relation.

c) Write an equation to represent this partial variation.

 $\underline{Ex. 3}$ A company tests heavy duty elastic bands by measuring how much they stretch when supporting various masses.

Mass (kg)	0	2	4	6	8
Length (cm)	6.2	9.6	13.0	16.4	19.8

a) Determine if this relation is linear.

b) What does the point (0, 6.2) represent?

c) Calculate the slope. What does it represent?

d) Write an equation in the form of y = mx + b.

e) Predict how long the elastic band would be when it is supporting 10 kg.