MARBLE
Unit lesson

Exploring Properties of Exponential Functions

Investigation:

1. Complete the following tables.
i)

x	$y=x$
0	0
1	1
2	2
3	3
4	4
5	5
6	6

ii)

x	$y=2 x$
0	0
1	2
2	4
3	6
4	8
5	10
6	12

iii)

x	$y=x^{2}$
0	0
1	1
2	4
3	9
4	16
5	25
6	36

iv) | x | $y=2^{x}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |

2. Which pattern is growing:
$\begin{array}{ll}\text { a) Fastest? } & y=2^{x} \\ \text { b) Slowest? } & y=x\end{array}$

3. Complete the First and second differences.

4. What do you notice about the finite differences?
line \rightarrow first differences all the same, $2^{\text {nd }}$ diff all 0 . parabola \rightarrow second diff. all the same. exponential \rightarrow of consecutive finite differences always the ratio of consecutive finite difference factor.
equals the same common fact er
5. Complete the following tables.
i)

6. How do $y=3^{x}$ and $y=0.5^{x}$ compare with $y=2^{x}$?

The base of the exponential function is the same as the common ratio (only because $\Delta x=1$)
$y=3^{x}$ grus fastest $y=0.5^{x}$ is decreasing.
7. Complete the following chart.

f for intervals always use on which x-values this is happening.

* interval of increase ineans for what x-values is the graph increasing'.

UrL
8. Sam has $\$ 0.50$ in his wallet. His mom told him that if he consistently does all of his chores, she will give him double the amount that is in his wallet the first day and each day following, she will give him double the amount she gave him on the previous day.
a) Assuming Sam does his chores consistently, how much money will his mom give him on the fourth day?
where M is the amount

b) Sam is saving up to buy a new $\$ 300$ graphics card for his computer. On what day can he nu e her buy his graphics card?

Properties of Exponential Functions:

$$
\begin{array}{ll}
5^{\text {th }} 15^{50}+16=31^{50} & \therefore \text { the can } \\
6^{\text {th }} 31^{50}+32=63^{50} & \text { buy the, graphics } \\
7^{\text {th }} 63^{50}+64=127^{50} \quad \text { card on the } \\
8^{\text {th }} 127^{50}+128=255^{50} \quad 9^{\text {th }} \text { day. }
\end{array}
$$

- For $b>1$: As the independent variable increases by a constant amount, the dependent variable increases by a common factor.
(As the independent variable increases by one, the dependent variable increases by a common factor equal to the base of the exponential function.)
- For $0<b<1$: As the independent variable increases by a constant amount, the dependent variable decreases by a common factor.
(As the independent variable increases by one, the dependent variable decreases by a common factor equal to the base of the exponential function.)
- The ratio of consecutive finite differences is a constant.
- The graph increases at an increasing rate for bases greater than one. (The slope of the graph keeps getting steeper as x increases for bases greater than one.)
- $b^{0}=1$, for all $b \in R, b \neq 0$

Determining the Equation of an Exponential Function

1. Complete the chart to compare the effect of changing the value of a in $y=a\left(2^{x}\right)$.

	$f(x)=2^{x}$	$y=3\left(2^{x}\right)$	$y=0.5\left(2^{x}\right)$	$y=-\left(2^{x}\right)$	$y=-3\left(2^{x}\right)$
Domain	$\{x \in \mathbb{R}\}$				
Range	$\{y \in \mathbb{R} \mid y>0\}$	$\{y \in \mathbb{R} \mid y>0\}$	$\{y \in \mathbb{R} \mid y>0\}$	$\{y \in \mathbb{R} \mid y<0\}$	$\{y \in \mathbb{R} \mid y<0\}$
y-intercept	$y=1$	$y=3$	$y=0.5$	$y=-1$	$y=-3$
asymptote	$y=0$	$y=0$	$y=0$	$y=0$	$y=0$
Inc./dec.	increasing	increasing	increasing	decereasingledecreasing	

2. Summary: Exponential Equations of the form $y=a b^{x}$

$0<b<1$	b>1
Decreasing on $x \in R$ $\begin{gathered} D=\{x \in R\} \\ R=\{y \in R \mid y>0\} \end{gathered}$ Horizontal Asymptote: $y=0$ y-intercept: $y=a$	$\begin{gathered} \text { Increasing on } x \in R \\ D=\{x \in R\} \\ R=\{y \in R \mid y>0\} \\ \text { Horizontal Asymptote: } y=0 \\ y \text {-intercept: } y=a \end{gathered}$
Increasing on $x \in R$ $\begin{gathered} \mathrm{D}=\{x \in \mathrm{R}\} \\ \mathrm{R}=\{y \in \mathrm{R} \mid \mathrm{y}<0\} \end{gathered}$ Horizontal Asymptote: $y=0$ y-intercept: $y=a$	$\begin{gathered} \text { Decreasing on } x \in R \\ D=\{x \in R\} \\ R=\{y \in R \mid y<0\} \\ \text { Horizontal Asymptote: } y=0 \\ y \text {-intercept: } y=a \end{gathered}$

3. Determine the exponential equation in the form $y=a b^{x}$, for the given graphs.
a)

$(0,2),(1,6)$
$4=2$
b)

c)

$$
\begin{aligned}
& =-\left(2^{x}\right) \\
& \neq(-2)^{x}
\end{aligned}
$$

4. Write an Exponential Function given its properties.

A radioactive sample has a half-life of 3 days. The initial sample is 200 mg .
a) Write a function to relate the amount remaining, in milligrams, to the time, in days.

after 3 days $P=100^{2}$) $\times \frac{1}{2}\binom{$ halif-ife }{ inter jai }
after 6 days $P=50^{2} \times\left(\begin{array}{l}\text { andiluf } \\ \text { halfilfe } \\ \text { interval }\end{array}\right)$
numberof
nalf-1ife
intervals
0
1
2
3

$$
P=200\left(\frac{1}{2}\right)^{\frac{t}{3}}
$$

b) Restrict the domain of the function so that the mathematical model fits the situation it is describing.

$$
D=\{t \in \mathbb{R} \mid t \geqslant 0\}
$$

Translations and Reflections of Exponential Functions

1. Each function given below is a translation and/or reflection of the exponential function $f(x)=3^{x}$. For each of these transformations, write the equation as a transformation of $f(x)=3^{x}$ in function notation. Then, describe how $f(x)=3^{x}$ should be shifted and/or reflected to obtain the new graph of the transformed function.

Function	$y=3^{x}+1$	$y=3^{x-2}$	$y=3^{(x+4)}$
Function Notation	$y=f(x)+1$	$y=f(x-2)$	$y=f(x+4)$
Description of Transformation	shiftupl	shift right 2	shift left 4

Function	$y=-3^{x}$	$y=3^{-x}$	$y=-3^{x+3}-1$
Function Notation	$y=-f(x)$	$y=f^{\prime}(-x)$	$4=-f(x+3)-1$
Description of	reflect in	reflect in	reflect in $x-a x i s$, Transformation
	y-axis left 3,		
	y-axis	down	

2. Draw the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ and the transformation $y=-f(x+3)-5$. What is the equation of the transformed function?

$$
\begin{aligned}
& \text { (2) shift left } 3 \\
& \text { (3) shift down }
\end{aligned}
$$

(4) Spend time
helping them graft $y=\left(\frac{1}{2}\right)^{x} \theta$

x	$y=\left(\frac{1}{2}\right)^{x}$
-2	$\left(\frac{1}{2}\right)^{-2}=2^{2}=4$
-1	$\left(\frac{1}{2}\right)^{-1}=2^{\prime}=2$
0	$\left(\frac{1}{2}\right)^{0}=1$
1	$\left(\frac{1}{2}\right)^{\prime}=\frac{1}{2}$
2	$\left(\frac{1}{2}\right)^{2}=\frac{1}{2^{2}}=\frac{1}{4}$

3. Given the original graph $y=2^{x}$ and each of the following four transformations, Describe each of the transformations and write the new equation.

Description: up 3
New Equation: $\quad y=2^{x}+3$

Description: right 3 down 4
New Equation: $y=2^{(x-3)}-4$

d)

Description: reflect in x-axis
New Equation: $y=-2^{x}$
Description: reflect in y-axis shifted down 6
New Equation: $y=2^{-x}-6$
General Equation of Exponential Functions:

$$
y=a b^{k(x-d)}+c
$$

a< $0 \Rightarrow$ reflection in x - $a x$ is
$k<0 \Rightarrow$ reflection in y-axis
$d \Rightarrow$ shift right/left ($d>0 \Rightarrow$ right, $d<0 \Rightarrow$ left $)$
$c \Rightarrow$ shift up/down ($c>0 \Rightarrow$ up, $c<0 \Rightarrow$ down)

* Asymptote $y=c \quad$ y -int is not $y=a$ if 4 e
\rightarrow ALWAYS

Transformations of Exponential Functions

1. Take up test on Transformations of Functions. Today's work is just an extension of transformations of functions to Exponential Functions.
2. a) Graph $f(x)=3^{x}$ on the grid below.
b) On the same set of axes, graph $y=-2\left(3^{x}\right)$. Describe this transformation.

3. reflection in x-axts
4. vertical stredch factor 2 .

5. Given $f(x)=3^{x}$, graph $y=3^{2 x}$ and describe the transformation.

6. Given $f(x)=3^{x}$, graph $y=3^{-\frac{1}{2} x}$ and describe the transformation.

7. reflect in y-axis
8. Horizontal Stretch factor 2 .
9. a) Identify the transformations of $f(x)=2^{x}$ that will produce the graph of

$$
y=-f(-2 x+6)+5 \quad y=-f[-2(x-3)]+5
$$

1. reflect in x-axis
2. " " y-axis.
3. horizontal compression factor $\frac{1}{2}$
4. shift right 3
5. Shift up 5
b) Graph the transformation. Label the final graph with its equation.

6. Match each transformation with the corresponding equation, using $f(x)=10^{x}$ as the base. Not all transformations will match an equation.

Transformation	
a) Horizontal stretch factor $3 \quad y=10^{\frac{13}{x}}$	Equation
b) Shift 3 units up (A) $y=10^{\circ}$	A $y=10^{x}+3 \quad b$
c) Shift 3 units left (B)	B $y=10^{x+3} \quad C$
d) Vertical compression factor $\frac{1}{3}$ (G)	C $y=-10^{x} \quad 9$
e) Vertical stretch factor $3-y=3\left(10^{x}\right)$	D $y=10^{x}-3$
f) Shift 3 units right $\quad y=10^{x-3}$	$\text { E } y=10^{3 x}$
g) Reflect in x-axis h) Shift 3 units down	F $y=10^{-x}$ reflect
i) Horizontal compression factor $\frac{1}{3}$ (E)	$G \quad \gamma=\left(\frac{1}{3}\right) 10^{x} \mathrm{~d}$.

General Equation of an Exponential Function:

$$
y=a b^{k(x-d)}+c
$$

$$
\begin{aligned}
& a<0 \Rightarrow \text { reflection in } x \text { - } a x i s \\
& k \times 0 \Rightarrow \text { reflection in } y \text { - } a x i s
\end{aligned}
$$

$|a|<1 \Rightarrow$ Vertical Compression factor $|a|$
$|a|>1 \Rightarrow$ Vertical Stretch factor $|a|$
$|k|<1 \Rightarrow$ Horizontal Stretch factor $\frac{1}{|k|}$
$|k|>1 \Rightarrow$ Horizontal Compression factor $\frac{1}{|k|}$
$d \Rightarrow$ shift right/left ($d>0 \Rightarrow$ right, $d<0 \Rightarrow$ left)
$c \Rightarrow$ shift up/down ($c>0 \Rightarrow$ up, $c<0 \Rightarrow$ down $)$

Unit 4: Exponents and Exponential Functions Day 8: Application - Growth and Decay Problems

Today we will...

1. Create equations for real-world mroblems
2. Solve exponential equations

In general, for exponential growth / decay problems:

$$
f(x)=a(b)^{x}
$$

where,
$f(x)$ is the final value (y-value, population at time $\neq x$) a is the initial value
b is the growth factor (if it is >1) or the decay factor (if it is $0<b<1$) x is the number of growth or decay periods

Important Notes:

If a growth rate is given as a percent, then the base of the power in the equation (b) can be obtained by adding or subtracting the rate (as a decimal) from 1.
ex. A growth rate of 18% involves multiplying repeatedly by 1.18
Also, the units for the growth and decay rate and for the number of growth and decay periods must be the same
ex. For a monthly interest rate of 0.05\%, the growth period needs to be in months tool

Growth Problem

1. In 1996, Alberta had a population of 35000 . Recently, it has experienced a large population increase due to the discovery of one of the world's largest ail deposits! Alliberta's population has grown at ananmual rate of approximately 8%. The algebraic model for this case is $P(n)=P_{0}(1+r)^{n}$
a.) What is the initial population $P_{a}=35000$
b.) What is the growth rate, r ? $\quad r=8 \%=0.08 \Rightarrow b^{\prime}=108 \%=1.08$
c.) Write an algebraic model for this sitheatiom using the above information.

$$
P(n)=35000(1.08)
$$

where $P(n)$ is the population of Alberta as a function of n, the number of years since 1996 .
d) Use the equation to determine the current populotiont updated values $2015 \quad P(19)=35000(1.08)^{19} \quad \begin{aligned} & \text { will year } \\ & \text { each }\end{aligned}$

$$
\begin{aligned}
& 2015 \\
&-\frac{1996}{19}=35000(1.08) \quad \text { each year } \\
&=151049.5371 \quad \therefore \text { the population } \\
& \equiv 151049 \quad \text { would } 6 \text { a } 151049 .
\end{aligned}
$$

e.) How long did the take for the population ta triple at this growth rate? $P(n)=105000$

$$
\begin{gathered}
35000 \\
\times 3
\end{gathered}
$$

$$
\begin{aligned}
& 105000=35000(1.08)^{n} \\
& \frac{105000}{35000}=1.08^{2} \\
& 3=1.08^{n} \\
& \therefore n=14.3 \\
& \therefore \text { it would take about } \\
& 14.3 \text { years for the population } \\
& \text { to ride. (or abe y clears 4mos.) }
\end{aligned}
$$

n	1.08^{n}
3	$1.259 \ldots$
13	2.72
15	3.17
14	2.94
14.3	3.005

Decay Problems
2. A 200 g sample of radioactive polonium- 210 has a half-life dr 138 days

This means that every 138 days, the amount of polonium left in a sample is half of the original amount. The off polonium in grams, that remains after t days can be modeled by the equation:
a. What is the rate of decay? 50% or $\frac{1}{2}$ - $0.5^{M(t)=200\left(\frac{1}{2}\right)^{\frac{1}{138}}}$
b. Why y ia the exponent $\frac{1}{138}$?
$\frac{t}{13}$ is the number of "half-infe intervals".
The number of half-life periods is the time divided by y the time it tales the sample to halve.
c. Determinate the mass that remains after 5 years

$$
M(1820)=200(0.5)^{\frac{1826}{185}}
$$

$$
=5 \times 365+1 \quad=0.02
$$

$$
=1825+1
$$

d. Ht ow long does it take for this 200 g sample to decay to 110 g ?

$$
\begin{aligned}
& 110=200(0.5)^{113} \\
& \begin{array}{l}
110 \\
0.55
\end{array}=0.5^{\frac{t}{t \mid}} \\
& t=0.5^{\frac{t}{j 3}} \\
& \therefore \text { it will take } 119 \text { days } \\
& \text { for the sample size to } \\
& \text { be llog. }
\end{aligned}
$$

$$
f(x)=a(b)^{x}
$$

3. A new car costs $\$ 24,000$. It loses 18% of its value each year after it is purchased. This is called depreciation. $*$ dec ex
a.) What is the rate of depreciation in $18 \%=0.18$. use $100 \%-18 \%$
b.) Write an equation that models the decay/decilite of the investment.

$$
V(t)=24000(0.22)^{2}
$$

where $V(t)$ is the value of the car as a function of time in years since the car was purchased.
c.) Use the equation to determine the value of the automobile after 6 years

$$
\begin{aligned}
V(6) & =24000(0.82)^{6} \\
& \doteq 7296.16
\end{aligned}
$$

d) Use the equation to determine the value of the automobile after 30

$$
\begin{aligned}
& t=30 \text { months } \\
& \begin{array}{ll}
t=30 & V=24000(0.82)^{2.5} \\
t=2.5 \text { years } & \\
t=14613.22 \\
& \therefore \text { after } 30 \text { months, } \\
& \\
& \text { the car is worth } \\
& \\
& 14613.22 .
\end{array}
\end{aligned}
$$

Unit 4: Exponents and Exponential Functions Day 9 - Exponential Functions and Regression

Today we will...

- use technology to determine a model that best fits given data

MCR 3UI - U4 - D9 - Exponential Regression

Choosing a Function to Model a Set of Data

1. What type of function do you believe would best model the data below?
a)

b)

c)

d)

Determining an Equation Using Regression

Given the following points, determine the equation of the function:

x	y
0	10
2	5.6
4	3.2
6	1.8
8	1
10	0.6
12	0.3

**Need to use
REGRESSION

There are software programs to do this for us...
And DESMOS works pretty nicely...
Steps: 1. Add a table to input your data:

2. Enter the data in the table:

3. Add a new equation that is the 'general form' for the type of function we think this would be:
ie. Linear
$\mathrm{y}_{1} \sim \mathrm{~m} \mathrm{x}_{1}+\mathrm{b}$
(*) type y I * the
computer will
Quadratic $\quad y_{1} \sim a\left(x_{1}-h\right)^{2}+k$
Exponential $y_{1} \sim a b^{k\left(x_{1}-h\right)}+c$
except use:
y_{1} in place of the y (so that Desmos knows to use the data we entered in y_{1} in our table)
x_{1} in place of the x (so that Desmos knows to use the data we entered in X_{1} in our table)
~ instead of the equal sign (so Desmos knows the model doesn't have to be a perfect fit)

MCR 3UI - U4 - D9 - Exponential Regression :

How well the function models the data can actually be quantified using ...
R^{2}, the Coefficient of Determination (or Correlation Coefficient) - which is a measure of how well the regression line/ curve represents the data
$0=$ function does not model the data at all
$0.5=$ function is a poor model of the data
(50% of the time the model will make a correct prediction)
$1=$ function is a perfect model of the data
(100% of the time the model will make a correct prediction)
So.... the closer your R^{2} value is to 1 , the better the function models the data!

Looking at all three functions, the third (exponential) models the data the best with an R^{2} value of 1 .

Using the information given, VOILA.... You have your equation!!!

$$
y=4.41(0.71)^{0.83(x-2.85)}+0.0057
$$

Now, use your equation to determine the height of the ball after 2.25 seconds. ($x \rightarrow$ seconds, $y \rightarrow$ matres
cursor on curve at $x=2.25$, ordered pair should show

Today's Practice Questions:
Duotang - Day 5\#1-3
Day 6 \# 1-3 (whatever you can get to in class)

$$
y=0.5^{2}+4
$$

Unit 5 Review

Exponential Functions

1. For a large x-value, put the following functions in order of increasing y -

$$
\begin{aligned}
& \text { values: } y=2, y=x y=3 x, y=0.5^{x}, y=x^{2} \\
& y=0.5^{x}, y=x, y=x^{2}, y=2^{x}, y=3^{x}
\end{aligned}
$$

2. Which graph grows faster on the Domain $\{x \in R \mid x \geq 0\}: y=0.5^{x}, y=2^{x}$, $y=3^{x}$?
3. Complete the following statements: First Difference column tells us

If all first differences are the same the function is linear (a line).
The Second Difference column tells us
If all second differences are the same the function is quadrati
4. For an exponential function, do the finite difference columns tell us Ca Parabola anything that you cannot discover from the y-column of the table of values? Forge. 12 -yes.
For gr. Il - No (The ratio of consecective y-values gives us the same information as the ratio of consecutive finite
5. Given an Exponential Function, be able to state differences.)
a) whether the function is increasing or decreasing on $\{x \in R\}$
b) the domain $\|x \in R\|$

$$
\begin{aligned}
& \{x \in R\} \\
& y=a\left(b^{k(x-d)}\right)+c
\end{aligned}
$$

c) the range $\{y \in R \mid y>c\}$ or $\{y \in R \mid y<c\}$
d) the asymptote $y=c$
e) the intercepts

* there are no x-intercepts unless the graph is shifted up or down
* the y-intercept is only $y=a$ if the graph has not been shifted

6. Given the y-intercept and another point on an exponential graph, find the equation of the exponential function. of the form $y=a b^{2}$.
ex. a) $(0,3)$ and $\left(1, \frac{15}{y}\right)$

b) $(0,-2)$ and $\left(-\frac{1}{x},-5\right)$

$$
\begin{aligned}
a & =-2 \\
y & =-2 b^{x} \quad+6^{-1} \\
-\frac{5}{5} & =-\frac{x}{-2} b^{-1} \\
\frac{5}{-2} & =\frac{2}{5} \\
\frac{5}{2} & =b^{-1} \\
\frac{5}{2} & =\frac{1}{b} \\
\frac{2}{5} & =b \quad \therefore y=-2\left(\frac{2}{5}\right)^{x}
\end{aligned}
$$

7. Given the original exponential graph and a graph that has been translated and/or reflected, you need to be able to find the equation of the transiated/reflected exponential function (see lesson example 3).
8. Penicillin V has a half-lif of 30 mhlutes. The initial dosage to an adult is 512 mg .
a) Write a function to relate the amount of penicillin V remaining, in mg , to t the time, in hours.
車

$$
y=Q b^{k}
$$

$$
b^{k(x-4)}
$$

$$
+c
$$

b) The function is a transformation of $y=2^{x}$. Write function in part (a) as a

$$
\begin{aligned}
P(t) & =2^{9}\left(2^{-1}\right)^{2 t} \\
& =2^{9}\left(2^{-2 t}\right)
\end{aligned}=2^{-2-2 t+9}=2^{-2(t-1 t)}
$$

c) Describe the transformations required to map $y=2^{x}$ onto the simplified function in part (b).

1. reflection in y-axis
2. horizontal compression factor $\frac{1}{2}$
3. shift right 4.5 units.
4. Be able to describe the transformations that map an original function onto a given equation and then graph each function using transformations.
5. Be able to draw a scatter plot and identify an appropriate model for that scatter plot.
6. Be able to determine an appropriate function to model exponential growth data. (Given either a table of values or a scatter plot) in the form

$$
y=a b^{x}
$$

+ more review of exponential growth/decay percent increase/decrease

