Unit 5 Day 7 Review

1a) \(y = 27 \left(\frac{1}{3} \right)^x \)

 \[
 y = 3^3 (3^{-x}) = 27 \\
 \frac{3^{-x}}{3} = 3^{-x} \\
 = 3^{-x}(x-3) \\
 = 3^{-(x-3)} \\
 \]

begin with \(f(x) = 3^x \)

1. reflection in y-axis,
2. shift right 3.

b) (i) \(D = \mathbb{R} \times \mathbb{R}^+ \)

(ii) \(R = \{ y \in \mathbb{R} \mid y > 0 \} \)

(iii) no x-intercepts.

\[y \text{-int at } 3^{-(0-3)} = 3^3 = 27 \]

(iv) graph is always decreasing.

\[\text{decreasing on } x \in \mathbb{R} \]

\[\text{increasing } y \]

(v) asymptote is \(y = 0 \).

2. given \((0,10)\) \((1,40)\) \((2,160)\)

y-int is \(a\) so \(a = 10 \)

\[
\begin{array}{c|c|c}
 x & y & \text{ratio is common factor} \\
 \hline
 0 & 10 & 10 \\
 1 & 40 & 40 \quad 120 \\
 2 & 160 & 4 \quad \text{so } b = 4 \\
\end{array}
\]

\[y = 10 \left(4^x \right) \]
Unit 5 Review

3. \(y = 2^{x-3} + 4 \)
 \(f \) begins with \(f(x) = 2^x \)
 1. right 3
 2. up 4

 (i) \(D = \{ x \in \mathbb{R} \} \)

 (ii) \(R = \{ y \in \mathbb{R} | y > 4 \} \)

 (iii) Asymptote is given as \(y = 4 \)

4. \(y = 5^x \)
 (a) \(y = 2(5^x) \)
 vertical stretch factor 2
 (b) \(y = 5^{-2x} \)
 horizontal compression factor \(\frac{1}{2} \)
 (c) \(y = -5^{-x} \)
 1. reflection in x-axis
 2. reflection in y-axis
 (d) \(y = 5^{-5x-10} \)
 1. reflection in y-axis
 2. horizontal compression factor \(\frac{1}{5} \)
 3. shift left 2.
Unit 5 Review

(a) | n | h | first diff | second diff | third diff |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>>24</td>
<td>> 5</td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>>19</td>
<td>> 5</td>
<td>> -2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>>14</td>
<td>> 3</td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>>14</td>
<td>> 3</td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>>14</td>
<td>> 3</td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>>14</td>
<td>> 3</td>
<td>> 0</td>
<td></td>
</tr>
</tbody>
</table>

The trend is not linear, not quadratic, and the curve appears exponential.

(b) The curve appears to be exponential.

- \(\frac{76}{100} = 0.76 \)
- \(\frac{57}{76} = 0.75 \)
- \(\frac{43}{57} = 0.75 \)
- \(\frac{32}{43} = 0.74 \)
- \(\frac{24}{32} = 0.75 \)

The ratio of consecutive \(y \)-values have a common ratio around 0.75.

(c) Using TI-83

Exponential Regression

\[y = 100 \times 0.7354 \times (0.7512)^x \]

\(r = -0.999947569 \)

\(r^2 = 0.999895 \)

(d) (i) According to the mathematical model, there is an asymptote at \(h = 0 \) which means that although the height of the bouncing ball will get very close to zero metres, the ball will never stop bouncing.

(ii) In real-life, the ball would stop bouncing.

(e) Other factors may come into play; the exponential model does not allow us to extrapolate too far beyond the data collected.